Print This Solution Close This Solution

Find solution using dual-simplex method
MAX Z $=\mathbf{- 2 \times 1} \mathbf{- 2 \times 2 - 4 \times 3}$
subject to
$2 \times 1+3 \times 2+5 \times 3>=2$
$3 \times 1+\times 2+7 \times 3<=3$
$\mathrm{x} 1+4 \times 2+6 \times 3<=5$
and $x 1, x 2, x 3>=0$

Solution:

Problem is
$\operatorname{Max} Z=-2 x_{1}-2 x_{2}-4 x_{3}$
subject to

$$
\begin{aligned}
2 x_{1}+3 x_{2} & +5 x_{3} \geq 2 \\
3 x_{1}+x_{2} & +7 x_{3} \leq 3 \\
x_{1}+4 x_{2} & +6 x_{3} \leq 5 \\
\text { and } x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

In order to apply the dual simplex method, convert all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-2 x_{1}-2 x_{2}-4 x_{3}$
subject to

$$
\begin{aligned}
-2 x_{1}-3 x_{2}-5 x_{3} & \leq-2 \\
3 x_{1} & +x_{2}+7 x_{3} \leq 3 \\
x_{1}+4 x_{2} & +6 x_{3} \leq 5
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=-2 x_{1}-2 x_{2}-4 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to

$$
\begin{aligned}
-2 x_{1}-3 x_{2}-5 x_{3}+S_{1} & =-2 \\
3 x_{1}+x_{2}+7 x_{3}+S_{2} & =3 \\
x_{1}+4 x_{2}+6 x_{3} & +S_{3}
\end{aligned}=5
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	-2	-2	-4	0	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}
S_{1}	0	-2	-2	(-3)	-5	1	0	0
S_{2}	0	3	3	1	7	0	1	0
S_{3}	0	5	1	4	6	0	0	1
$Z=0$		Z_{j}	0	0	0	0	0	0
		$C_{j}-Z_{j}$	-2	-2	-4	0	0	0
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{1}, j} \\ \text { and } S_{1}, j<0 \end{array}$	1	$\frac{2}{3} \uparrow$	$\frac{4}{5}$	---	---	---

Minimum negative X_{B} is -2 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is $\frac{2}{3}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is -3 .
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=-3$
$R_{1}($ new $)=R_{1}($ old $) \div-3$
R_{2} (new) $=R_{2}($ old $)-R_{1}$ (new)
R_{3} (new) $=R_{3}$ (old) $-4 R_{1}$ (new)

Iteration-2 C_{j} -2 -2 -4 0 0 0 \boldsymbol{B} $\boldsymbol{C}_{\boldsymbol{B}}$ $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$ $\boldsymbol{x}_{\mathbf{2}}$ $\boldsymbol{x}_{\mathbf{3}}$ $\boldsymbol{S}_{\mathbf{1}}$ $\boldsymbol{S}_{\mathbf{2}}$ $\boldsymbol{S}_{\mathbf{3}}$ x_{2} -2 $\frac{2}{3}$ $\frac{2}{3}$ 1 $\frac{5}{3}$ $-\frac{1}{3}$ 0 0 S_{2} 0 $\frac{7}{3}$ $\frac{7}{3}$ 0 $\frac{16}{3}$ $\frac{1}{3}$ 1 0 S_{3} 0 $\frac{7}{3}$ $-\frac{5}{3}$ 0 $-\frac{2}{3}$ $\frac{4}{3}$ 0 1 $\boldsymbol{Z}=-\frac{\mathbf{4}}{\mathbf{3}}$ $\boldsymbol{Z}_{\boldsymbol{j}}$ $-\frac{\mathbf{4}}{\mathbf{3}}$ $\mathbf{- 2}$ $\mathbf{- \frac { 1 } { 3 }}$ $\frac{\mathbf{2}}{\mathbf{3}}$ $\mathbf{0}$ $\mathbf{0}$

		$C_{j}-Z_{j}$	$-\frac{2}{3}$	0	$-\frac{2}{3}$	$-\frac{2}{3}$	0	0
		Ratio	---	---	---	---	---	---

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=\frac{2}{3}, x_{3}=0$
$\operatorname{Max} Z=-\frac{4}{3}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MAX Z $=-\mathrm{x} 1-\mathbf{2 x} \mathbf{2}$
subject to
$-2 \times 1-\times 2<=-4$
$-\mathrm{x} 1-2 \times 2<=-7$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=-x_{1}-2 x_{2}$
subject to
$-2 x_{1}-x_{2} \leq-4$

- $x_{1}-2 x_{2} \leq-7$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-x_{1}-2 x_{2}+0 S_{1}+0 S_{2}$
subject to
$-2 x_{1}-x_{2}+S_{1}=-4$
$-x_{1}-2 x_{2}+S_{2}=-7$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-1	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	-4	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$
S_{1}	0	-7	$\boldsymbol{S}_{\mathbf{2}}$			
$\boldsymbol{S}_{\mathbf{2}}$	0	$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{(- 1)}$	-2	0	1
$\boldsymbol{Z}=\mathbf{0}$		$C_{j}-Z_{j}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
	Ratio $=\frac{C_{j}-Z_{j}}{S_{2}, j}$ and $S_{2}, j<0$	-1	-2	0	0	
		1	1	---	---	

Minimum negative X_{B} is -7 and its row index is 2 . So, the leaving basis variable is S_{2}.
Minimum positive ratio is 1 and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -1 .
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=-1$
$R_{2}($ new $)=R_{2}($ old $) \div-1$
R_{1} (new) $=R_{1}($ old $)+2 R_{2}$ (new)

Iteration-2		C_{j}	-1	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	10	0	3	1	-2
x_{1}	-1	7	1	2	0	-1
$\boldsymbol{Z}=-7$		Z_{j}	$-\mathbf{1}$	$-\mathbf{2}$	$\mathbf{0}$	$\boldsymbol{1}$
		$C_{j}-Z_{j}$	0	0	0	-1
	Ratio	---	---	$\boldsymbol{- -}$	$\boldsymbol{- -}$	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=7, x_{2}=0$
$\operatorname{Max} Z=-7$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=2 \times 1+\mathbf{x} 2$
subject to
$3 \times 2>=6$
$3 \times 1+2 \times 2>=8$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=2 x_{1}+x_{2}$
subject to

$$
3 x_{2} \geq 6
$$

$3 x_{1}+2 x_{2} \geq 8$
and $x_{1}, x_{2} \geq 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-2 x_{1}-x_{2}$
subject to
$-3 x_{2} \leq-6$
$-3 x_{1}-2 x_{2} \leq-8$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-2 x_{1}-x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
-3 x_{2}+S_{1}=-6
$$

$-3 x_{1}-2 x_{2}+S_{2}=-8$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-2	-1	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	-6	0	-3	1	0
about:blank						

$\boldsymbol{S}_{\mathbf{2}}$	0	-8	-3	$\mathbf{(- 2)}$	0	1
$\boldsymbol{Z = 0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
		$C_{j}-Z_{j}$	-2	-1	0	0
	Ratio $=\frac{C_{j}-Z_{j}}{S_{2}, j}$ and $S_{2}, j<0$	$\frac{2}{3}$	$\frac{1}{2} \uparrow$	---	--e	

Minimum negative X_{B} is -8 and its row index is 2 . So, the leaving basis variable is S_{2}.

Minimum positive ratio is $\frac{1}{2}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is -2 .
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=-2$
$R_{2}($ new $)=R_{2}($ old $) \div-2$
$R_{1}($ new $)=R_{1}($ old $)+3 R_{2}($ new $)$

Iteration-2		C_{j}	-2	-1	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	6	$\frac{9}{2}$	0	1	$-\frac{3}{2}$
x_{2}	-1	4	$\frac{3}{2}$	1	0	$-\frac{1}{2}$
$Z=-4$		Z_{j}	$-\frac{\mathbf{3}}{\mathbf{2}}$	$-\mathbf{1}$	$\mathbf{0}$	$\frac{\mathbf{1}}{\mathbf{2}}$
		$C_{j}-Z_{j}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=4$
$\operatorname{Max} Z=-4$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN Z $=3 \times 1+4 \times 2$
subject to
$2 \times 1+3 \times 2>=90$
$4 \times 1+3 \times 2>=120$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=3 x_{1}+4 x_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \geq 90 \\
& 4 x_{1}+3 x_{2} \geq 120 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

In order to apply the dual simplex method, convert $\operatorname{Min} Z$ to $\operatorname{Max} Z$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-3 x_{1}-4 x_{2}$
subject to
$-2 x_{1}-3 x_{2} \leq-90$
$-4 x_{1}-3 x_{2} \leq-120$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-3 x_{1}-4 x_{2}+0 S_{1}+0 S_{2}$
subject to
$-2 x_{1}-3 x_{2}+S_{1}=-90$
$-4 x_{1}-3 x_{2}+S_{2}=-120$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-3	-4	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	-90	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$
S_{1}	0	-2	-3	$\boldsymbol{S}_{\mathbf{2}}$		
about:blank						

S_{2}	0	-120	(-4)	-3	0	1
$Z=0$		Z_{j}	0	0	0	0
		$C_{j}-Z_{j}$	-3	-4	0	0
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{2}, j} \\ \text { and } S_{2}, j<0 \end{array}$	$\frac{3}{4} \uparrow$	$\frac{4}{3}$	---	---

Minimum negative X_{B} is -120 and its row index is 2 . So, the leaving basis variable is S_{2}.
Minimum positive ratio is $\frac{3}{4}$ and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -4 .
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=-4$
$R_{2}($ new $)=R_{2}($ old $) \div-4$
R_{1} (new) $=R_{1}($ old $)+2 R_{2}$ (new)

Iteration-2		C_{j}	-3	-4	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}
S_{1}	0	-30	0	$\left(-\frac{3}{2}\right)$	1	$-\frac{1}{2}$
x_{1}	-3	30	1	$\frac{3}{4}$	0	$-\frac{1}{4}$
$Z=-90$		Z_{j}	-3	$-\frac{9}{4}$	0	$\frac{3}{4}$
		$C_{j}-Z_{j}$	0	$-\frac{7}{4}$	0	$-\frac{3}{4}$
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{1}, j} \\ \text { and } S_{1}, j<0 \end{array}$	---	$\frac{7}{6} \uparrow$	---	$\frac{3}{2}$

Minimum negative X_{B} is -30 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is $\frac{7}{6}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is $-\frac{3}{2}$.
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=-\frac{3}{2}$
$R_{1}($ new $)=R_{1}(\mathrm{old}) \times-\frac{2}{3}$
$R_{2}($ new $)=R_{2}($ old $)-\frac{3}{4} R_{1}$ (new)

Iteration-3		C_{j}	-3	-4	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
x_{2}	-4	20	0	1	$-\frac{2}{3}$	$\frac{1}{3}$
x_{1}	-3	15	1	0	$\frac{1}{2}$	$-\frac{1}{2}$
$\boldsymbol{Z}=-\mathbf{1 2 5}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	-3	-4	$\frac{\mathbf{7}}{\mathbf{6}}$	$\frac{\mathbf{1}}{\mathbf{6}}$
		$C_{j}-Z_{j}$	0	0	$-\frac{7}{6}$	$-\frac{1}{6}$
	Ratio	---	---	---	---	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=15, x_{2}=20$
$\operatorname{Max} Z=-125$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
$\operatorname{MIN} Z=2 \times 1+2 \times 2+4 \times 3$
subject to
$2 \times 1+3 \times 2+5 \times 3>=2$
$3 \times 1+\mathrm{x} 2+7 \times 3<=3$
$\mathrm{x} 1+4 \times 2+6 \times 3<=5$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is
$\operatorname{Min} Z=2 x_{1}+2 x_{2}+4 x_{3}$
subject to

$$
\begin{aligned}
2 x_{1}+3 x_{2} & +5 x_{3} \geq 2 \\
3 x_{1}+x_{2} & +7 x_{3} \leq 3 \\
x_{1}+4 x_{2} & +6 x_{3} \leq 5 \\
\text { and } x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

In order to apply the dual simplex method, convert Min Z to $\operatorname{Max} Z$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-2 x_{1}-2 x_{2}-4 x_{3}$
subject to

$$
\begin{aligned}
-2 x_{1}-3 x_{2}-5 x_{3} & \leq-2 \\
3 x_{1} & +x_{2}+7 x_{3} \leq 3 \\
x_{1}+4 x_{2} & +6 x_{3} \leq 5
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=-2 x_{1}-2 x_{2}-4 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to

$$
\begin{aligned}
-2 x_{1}-3 x_{2}-5 x_{3}+S_{1} & =-2 \\
3 x_{1}+x_{2}+7 x_{3}+S_{2} & =3 \\
x_{1}+4 x_{2}+6 x_{3} & +S_{3}
\end{aligned}=5
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	-2	-2	-4	0	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}
S_{1}	0	-2	-2	(-3)	-5	1	0	0
S_{2}	0	3	3	1	7	0	1	0
S_{3}	0	5	1	4	6	0	0	1
$Z=0$		Z_{j}	0	0	0	0	0	0
		$C_{j}-Z_{j}$	-2	-2	-4	0	0	0
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{1}, j} \\ \text { and } S_{1}, j<0 \end{array}$	1	$\frac{2}{3} \uparrow$	$\frac{4}{5}$	---	---	---

Minimum negative X_{B} is -2 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is $\frac{2}{3}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is -3 .
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=-3$
$R_{1}($ new $)=R_{1}($ old $) \div-3$
R_{2} (new) $=R_{2}($ old $)-R_{1}$ (new)
R_{3} (new) $=R_{3}$ (old) $-4 R_{1}$ (new)

Iteration-2 C_{j} -2 -2 -4 0 0 0 \boldsymbol{B} $\boldsymbol{C}_{\boldsymbol{B}}$ $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$ $\boldsymbol{x}_{\mathbf{2}}$ $\boldsymbol{x}_{\mathbf{3}}$ $\boldsymbol{S}_{\mathbf{1}}$ $\boldsymbol{S}_{\mathbf{2}}$ $\boldsymbol{S}_{\mathbf{3}}$ x_{2} -2 $\frac{2}{3}$ $\frac{2}{3}$ 1 $\frac{5}{3}$ $-\frac{1}{3}$ 0 0 S_{2} 0 $\frac{7}{3}$ $\frac{7}{3}$ 0 $\frac{16}{3}$ $\frac{1}{3}$ 1 0 S_{3} 0 $\frac{7}{3}$ $-\frac{5}{3}$ 0 $-\frac{2}{3}$ $\frac{4}{3}$ 0 1 $\boldsymbol{Z}=-\frac{\mathbf{4}}{\mathbf{3}}$ $\boldsymbol{Z}_{\boldsymbol{j}}$ $-\frac{\mathbf{4}}{\mathbf{3}}$ $\mathbf{- 2}$ $\mathbf{- \frac { 1 } { 3 }}$ $\frac{\mathbf{2}}{\mathbf{3}}$ $\mathbf{0}$ $\mathbf{0}$

		$C_{j}-Z_{j}$	$-\frac{2}{3}$	0	$-\frac{2}{3}$	$-\frac{2}{3}$	0	0
		Ratio	---	---	---	---	---	---

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=\frac{2}{3}, x_{3}=0$
$\operatorname{Max} Z=-\frac{4}{3}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=2 \times 1+\times 2+4 \times 3$
subject to
$2 \times 1+3 \times 2+3 \times 3>=12$
$3 \times 1+2 \times 2+\times 3>=18$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Min} Z=2 x_{1}+x_{2}+4 x_{3}$
subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+3 x_{3} \geq 12 \\
& 3 x_{1}+2 x_{2}+x_{3} \geq 18 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0 ;
\end{aligned}
$$

In order to apply the dual simplex method, convert $\operatorname{Min} Z$ to $\operatorname{Max} Z$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-2 x_{1}-x_{2}-4 x_{3}$
subject to
$-2 x_{1}-3 x_{2}-3 x_{3} \leq-12$
$-3 x_{1}-2 x_{2}-x_{3} \leq-18$
and $x_{1}, x_{2}, x_{3} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-2 x_{1}-x_{2}-4 x_{3}+0 S_{1}+0 S_{2}$
subject to
$-2 x_{1}-3 x_{2}-3 x_{3}+S_{1}=-12$
$-3 x_{1}-2 x_{2}-x_{3}+S_{2}=-18$
and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-2	-1	-4	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	-12	-2	-3	-3	1	0
about:blank							

S_{2}	0	-18	-3	(-2)	-1	0	1
$Z=0$		Z_{j}	0	0	0	0	0
		$C_{j}-Z_{j}$	-2	-1	-4	0	0
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{2}, j} \\ \text { and } S_{2}, j<0 \end{array}$	$\frac{2}{3}$	$\frac{1}{2} \uparrow$	4	--	---

Minimum negative X_{B} is -18 and its row index is 2 . So, the leaving basis variable is S_{2}.

Minimum positive ratio is $\frac{1}{2}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is -2 .
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=-2$
$R_{2}($ new $)=R_{2}($ old $) \div-2$
$R_{1}($ new $)=R_{1}($ old $)+3 R_{2}($ new $)$

Iteration-2		C_{j}	-2	-1	-4	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	15	$\frac{5}{2}$	0	$-\frac{3}{2}$	1	$-\frac{3}{2}$
x_{2}	-1	9	$\frac{3}{2}$	1	$\frac{1}{2}$	0	$-\frac{1}{2}$
$\boldsymbol{Z}=-\mathbf{9}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$-\frac{\mathbf{3}}{\mathbf{2}}$	$-\mathbf{1}$	$-\frac{\mathbf{1}}{\mathbf{2}}$	$\mathbf{0}$	$\frac{\mathbf{1}}{\mathbf{2}}$
		$C_{j}-Z_{j}$	$-\frac{1}{2}$	0	$-\frac{7}{2}$	0	$-\frac{1}{2}$

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=9, x_{3}=0$
$\operatorname{Max} Z=-9$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=3 \times 1+2 \times 2+x 3$
subject to
$2 \times 1+\mathrm{x} 2+4 \times 3>=15$
$\mathrm{x} 1+4 \times 2+3 \times 3>=21$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Min} Z=3 x_{1}+2 x_{2}+x_{3}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2}+4 x_{3} & \geq 15 \\
x_{1}+4 x_{2}+3 x_{3} & \geq 21
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$;

In order to apply the dual simplex method, convert $\operatorname{Min} Z$ to $\operatorname{Max} Z$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-3 x_{1}-2 x_{2}-x_{3}$
subject to
$-2 x_{1}-x_{2}-4 x_{3} \leq-15$

- $x_{1}-4 x_{2}-3 x_{3} \leq-21$
and $x_{1}, x_{2}, x_{3} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-3 x_{1}-2 x_{2}-x_{3}+0 S_{1}+0 S_{2}$
subject to
$-2 x_{1}-x_{2}-4 x_{3}+S_{1}=-15$

- $x_{1}-4 x_{2}-3 x_{3}+S_{2}=-21$
and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-3	-2	-1	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	-15	-2	-1	-4	1	0

S_{2}	0	-21	-1	-4	(-3)	0	1
$Z=0$		Z_{j}	0	0	0	0	0
		$C_{j}-Z_{j}$	-3	-2	-1	0	0
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{2}, j} \\ \text { and } S_{2}, j<0 \end{array}$	3	$\frac{1}{2}$	$\frac{1}{3} \uparrow$	-	---

Minimum negative X_{B} is -21 and its row index is 2 . So, the leaving basis variable is S_{2}.

Minimum positive ratio is $\frac{1}{3}$ and its column index is 3 . So, the entering variable is x_{3}.
\therefore The pivot element is -3 .
Entering $=x_{3}$, Departing $=S_{2}$, Key Element $=-3$
$R_{2}($ new $)=R_{2}($ old $) \div-3$
$R_{1}($ new $)=R_{1}($ old $)+4 R_{2}($ new $)$

Iteration-2		C_{j}	-3	-2	-1	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	13	$-\frac{2}{3}$	$\frac{13}{3}$	0	1	$-\frac{4}{3}$
x_{3}	-1	7	$\frac{1}{3}$	$\frac{4}{3}$	1	0	$-\frac{1}{3}$
$\boldsymbol{Z}=-7$	$\boldsymbol{Z}_{\boldsymbol{j}}$	$-\frac{\mathbf{1}}{\mathbf{3}}$	$-\frac{4}{\mathbf{3}}$	$-\mathbf{1}$	$\mathbf{0}$	$\frac{\mathbf{1}}{\mathbf{3}}$	
	$C_{j}-Z_{j}$	$-\frac{8}{3}$	$-\frac{2}{3}$	0	0	$-\frac{1}{3}$	
	Ratio	---	---	---	---	---	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=0, x_{3}=7$
$\operatorname{Max} Z=-7$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
$\operatorname{MIN} Z=3 \times 1+\mathbf{x} 2+2 \times 3$
subject to
$4 \times 1+\mathrm{x} 2+4 \times 3>=12$
$\mathrm{x} 1+3 \times 2+4 \times 3>=10$
$2 \times 1+2 \times 2+\mathrm{x} 3>=6$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is
$\operatorname{Min} Z=3 x_{1}+x_{2}+2 x_{3}$
subject to

$$
\begin{aligned}
4 x_{1}+x_{2}+4 x_{3} & \geq 12 \\
x_{1}+3 x_{2}+4 x_{3} & \geq 10 \\
2 x_{1}+2 x_{2}+x_{3} & \geq 6 \\
\text { and } x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

In order to apply the dual simplex method, convert Min Z to $\operatorname{Max} Z$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-3 x_{1}-x_{2}-2 x_{3}$
subject to
$-4 x_{1}-x_{2}-4 x_{3} \leq-12$

- $x_{1}-3 x_{2}-4 x_{3} \leq-10$
$-2 x_{1}-2 x_{2}-x_{3} \leq-6$
and $x_{1}, x_{2}, x_{3} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=-3 x_{1}-x_{2}-2 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to
$-4 x_{1}-x_{2}-4 x_{3}+S_{1} \quad=-12$
$-x_{1}-3 x_{2}-4 x_{3}+S_{2}=-10$
$-2 x_{1}-2 x_{2}-x_{3}+S_{3}=-6$
and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	-3	-1	-2	0	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	-12	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	-10	-4	-1	$\mathbf{(- 4)}$	1	0	0
S_{2}	0	-6	-1	-3	-4	0	1	0
S_{3}	0	$\boldsymbol{Z}_{\boldsymbol{j}}$	-2	-2	-1	0	0	1
$\boldsymbol{Z}=\mathbf{0}$		$C_{j}-Z_{j}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
	$C_{j}-Z_{j}$ Ratio $=\frac{S_{1}, j}{}$ and $S_{1}, j<0$	$\frac{3}{4}$	1	$\frac{1}{2} \uparrow$	---	---	---	

Minimum negative X_{B} is -12 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is $\frac{1}{2}$ and its column index is 3 . So, the entering variable is x_{3}.
\therefore The pivot element is -4 .
Entering $=x_{3}$, Departing $=S_{1}$, Key Element $=-4$
$R_{1}($ new $)=R_{1}($ old $) \div-4$
$R_{2}($ new $)=R_{2}($ old $)+4 R_{1}$ (new)
$R_{3}($ new $)=R_{3}$ (old) $+R_{1}$ (new)

Iteration-2		C_{j}	-3	-1	-2	0	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}
x_{3}	-2	3	1	$\frac{1}{4}$	1	$-\frac{1}{4}$	0	0
S_{2}	0	2	3	-2	0	-1	1	0
S_{3}	0	-3	-1	$\left(-\frac{7}{4}\right)$	0	- $\frac{1}{4}$	0	1
$Z=-6$		Z_{j}	-2	$-\frac{1}{2}$	-2	$\frac{1}{2}$	0	0

| | $C_{j}-Z_{j}$ | -1 | $-\frac{1}{2}$ | 0 | $-\frac{1}{2}$ | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Ratio $=\frac{C_{j}-Z_{j}}{S_{3}, j}$
 and $S_{3}, j<0$ | 1 | $\frac{2}{7} \uparrow$ | --- | 2 | --- | --- |
| | | | | | | | |

Minimum negative X_{B} is -3 and its row index is 3 . So, the leaving basis variable is S_{3}.

Minimum positive ratio is $\frac{2}{7}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is $-\frac{7}{4}$.

Entering $=x_{2}$, Departing $=S_{3}$, Key Element $=-\frac{7}{4}$
$R_{3}($ new $)=R_{3}($ old $) \times-\frac{4}{7}$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{4} R_{3}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)+2 R_{3}($ new $)$

Iteration-3		C_{j}	-3	-1	-2	0	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	\boldsymbol{x}_{3}	S_{1}	S_{2}	S_{3}
x_{3}	-2	$\frac{18}{7}$	$\frac{6}{7}$	0	1	$-\frac{2}{7}$	0	$\frac{1}{7}$
S_{2}	0	$\frac{38}{7}$	$\frac{29}{7}$	0	0	$-\frac{5}{7}$	1	$-\frac{8}{7}$
x_{2}	-1	$\frac{12}{7}$	$\frac{4}{7}$	1	0	$\frac{1}{7}$	0	$-\frac{4}{7}$
$Z=-\frac{48}{7}$		Z_{j}	$-\frac{16}{7}$	-1	-2	$\frac{3}{7}$	0	$\frac{2}{7}$
		$C_{j}-Z_{j}$	$-\frac{5}{7}$	0	0	$-\frac{3}{7}$	0	$-\frac{2}{7}$
		Ratio	---	---	---	---	---	--

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=\frac{12}{7}, x_{3}=\frac{18}{7}$
$\operatorname{Max} Z=-\frac{48}{7}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=4 \times 1+2 \times 2$
subject to
$4 \times 1+\times 2>=14$
$\mathrm{x} 1+3 \times 2>=12$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=4 x_{1}+2 x_{2}$
subject to

$$
\begin{array}{r}
4 x_{1}+x_{2} \geq 14 \\
x_{1}+3 x_{2} \geq 12
\end{array}
$$

and $x_{1}, x_{2} \geq 0 ;$

In order to apply the dual simplex method, convert $\operatorname{Min} \mathrm{Z}$ to $\operatorname{Max} \mathrm{Z}$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-4 x_{1}-2 x_{2}$
subject to
$-4 x_{1}-x_{2} \leq-14$

- $x_{1}-3 x_{2} \leq-12$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-4 x_{1}-2 x_{2}+0 S_{1}+0 S_{2}$
subject to
$-4 x_{1}-x_{2}+S_{1}=-14$

- $x_{1}-3 x_{2}+S_{2}=-12$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-4	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	-14	(-4)	-1	1	0
about:blank						

S_{2}	0	-12	-1	-3	0	1
$\boldsymbol{Z}=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
		$C_{j}-Z_{j}$	-4	-2	0	0
	Ratio $=\frac{C_{j}-Z_{j}}{S_{1}, j}$ and $S_{1}, j<0$	$1 \uparrow$	2	---	---	

Minimum negative X_{B} is -14 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is 1 and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -4 .
Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=-4$
$R_{1}($ new $)=R_{1}($ old $) \div-4$
R_{2} (new) $=R_{2}$ (old) $+R_{1}$ (new)

Iteration-2		C_{j}	-4	-2	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}
x_{1}	-4	$\frac{7}{2}$	1	$\frac{1}{4}$	- $\frac{1}{4}$	0
S_{2}	0	$-\frac{17}{2}$	0	$\left(-\frac{11}{4}\right)$	- $\frac{1}{4}$	1
$Z=-14$		Z_{j}	-4	-1	1	0
		$C_{j}-Z_{j}$	0	-1	-1	0
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{2}, j} \\ \text { and } S_{2}, j<0 \end{array}$	---	$\frac{4}{11} \uparrow$	4	---

Minimum negative X_{B} is $-\frac{17}{2}$ and its row index is 2. So, the leaving basis variable is S_{2}.
Minimum positive ratio is $\frac{4}{11}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is $-\frac{11}{4}$.
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=-\frac{11}{4}$
$R_{2}($ new $)=R_{2}($ old $) \times-\frac{4}{11}$
R_{1} (new) $=R_{1}($ old $)-\frac{1}{4} R_{2}$ (new)

Iteration-3		C_{j}	-4	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
x_{1}	-4	$\frac{30}{11}$	1	0	$-\frac{3}{11}$	$\frac{1}{11}$
x_{2}	-2	$\frac{34}{11}$	0	1	$\frac{1}{11}$	$-\frac{4}{11}$
$\boldsymbol{Z}=-\frac{\mathbf{1 8 8}}{\mathbf{1 1}}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	-4	$-\mathbf{2}$	$\frac{\mathbf{1 0}}{\mathbf{1 1}}$	$\frac{\mathbf{4}}{\mathbf{1 1}}$
		$C_{j}-Z_{j}$	0	0	$-\frac{10}{11}$	$-\frac{4}{11}$

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{30}{11}, x_{2}=\frac{34}{11}$
$\operatorname{Max} Z=-\frac{188}{11}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=5 \times 1+8 \times 2$
subject to
$2 \times 1+3 \times 2>=4$
$\mathrm{x} 1-2 \mathrm{x} 2>=5$
$\mathrm{x} 1+\mathrm{x} 2>=12$
and $x 1, x 2>=0$

Solution:

Problem is
$\operatorname{Min} Z=5 x_{1}+8 x_{2}$
subject to

$$
\begin{array}{r}
2 x_{1}+3 x_{2} \geq 4 \\
x_{1}-2 x_{2} \geq 5 \\
x_{1}+x_{2} \geq 12 \\
\text { and } x_{1}, x_{2} \geq 0
\end{array}
$$

In order to apply the dual simplex method, convert $\operatorname{Min} \mathrm{Z}$ to $\operatorname{Max} \mathrm{Z}$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-5 x_{1}-8 x_{2}$
subject to
$-2 x_{1}-3 x_{2} \leq-4$
$-x_{1}+2 x_{2} \leq-5$

- $x_{1}-x_{2} \leq-12$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ${ }^{\prime} \leq$ ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=-5 x_{1}-8 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to
$-2 x_{1}-3 x_{2}+S_{1} \quad=-4$
$-x_{1}+2 x_{2}+S_{2}=-5$

- $x_{1}-x_{2}+S_{3}=-12$
and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	-5	-8	0	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}
S_{1}	0	-4	-2	-3	1	0	0
S_{2}	0	-5	-1	2	0	1	0
S_{3}	0	-12	(-1)	-1	0	0	1
$Z=0$		Z_{j}	0	0	0	0	0
		$C_{j}-Z_{j}$	-5	-8	0	0	0
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{3}, j} \\ \text { and } S_{3}, j<0 \end{array}$	$5 \uparrow$	8	---	---	---

Minimum negative X_{B} is -12 and its row index is 3 . So, the leaving basis variable is S_{3}.
Minimum positive ratio is 5 and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -1 .
Entering $=x_{1}$, Departing $=S_{3}$, Key Element $=-1$
$R_{3}($ new $)=R_{3}($ old $) \div-1$
R_{1} (new) $=R_{1}$ (old) $+2 R_{3}$ (new)
$R_{2}($ new $)=R_{2}($ old $)+R_{3}$ (new)

Iteration-2		C_{j}	-5	-8	0	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$
S_{1}	0	20	0	-1	1	0	-2
S_{2}	0	7	0	3	0	1	-1
x_{1}	-5	12	1	1	0	0	-1
$\boldsymbol{Z}=-\mathbf{6 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$-\mathbf{5}$	$\mathbf{- 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5}$
	$C_{j}-Z_{j}$	0	-3	0	0	-5	
	Ratio	---	---	---	---	---	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=12, x_{2}=0$
$\operatorname{Max} Z=-60$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN Z $=10 \times 1+20 \times 2$
subject to
$\mathrm{x} 1+2 \times 2>=6$
$\mathrm{x} 1+4 \times 2>=8$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=10 x_{1}+20 x_{2}$
subject to

$$
x_{1}+2 x_{2} \geq 6
$$

$$
x_{1}+4 x_{2} \geq 8
$$

and $x_{1}, x_{2} \geq 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-10 x_{1}-20 x_{2}$
subject to

- $x_{1}-2 x_{2} \leq-6$
- $x_{1}-4 x_{2} \leq-8$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-10 x_{1}-20 x_{2}+0 S_{1}+0 S_{2}$
subject to

- $x_{1}-2 x_{2}+S_{1}=-6$
- $x_{1}-4 x_{2}+S_{2}=-8$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-10	-20	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\boldsymbol{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	-6	-1	-2	1	0
about:blank						

$\boldsymbol{S}_{\mathbf{2}}$	0	-8	-1	$\mathbf{(- 4)}$	0	1
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$C_{j}-Z_{j}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
		-10	-20	0	0	
	Ratio $=\frac{C_{j}-Z_{j}}{S_{2}, j}$ and $S_{2}, j<0$	10	$5 \uparrow$	---	---	

Minimum negative X_{B} is -8 and its row index is 2 . So, the leaving basis variable is S_{2}.
Minimum positive ratio is 5 and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is -4 .
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=-4$
R_{2} (new) $=R_{2}($ old $) \div-4$
R_{1} (new) $=R_{1}$ (old) $+2 R_{2}$ (new)

Iteration-2		C_{j}	-10	-20	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}
S_{1}	0	-2	$\left(-\frac{1}{2}\right)$	0	1	$-\frac{1}{2}$
x_{2}	-20	2	$\frac{1}{4}$	1	0	- $\frac{1}{4}$
$Z=-40$		Z_{j}	-5	-20	0	5
		$C_{j}-Z_{j}$	-5	0	0	-5
		$\begin{gathered} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{1}, j} \\ \text { and } S_{1}, j<0 \end{gathered}$	$10 \uparrow$	---	---	10

Minimum negative X_{B} is -2 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is 10 and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is $-\frac{1}{2}$.

Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=-\frac{1}{2}$
$R_{1}($ new $)=R_{1}($ old $) \times-2$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{4} R_{1}$ (new)

Iteration-3		C_{j}	-10	-20	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
x_{1}	-10	4	1	0	-2	1
x_{2}	-20	1	0	1	$\frac{1}{2}$	$-\frac{1}{2}$
$\boldsymbol{Z}=\mathbf{- 6 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{- 1 0}$	$\mathbf{- 2 0}$	$\mathbf{1 0}$	$\mathbf{0}$
	$C_{j}-Z_{j}$	0	0	-10	0	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=4, x_{2}=1$
$\operatorname{Max} Z=-60$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=12 \times 1+8 \times 2$
subject to
$2 \times 1+2 \times 2>=6$
$3 \times 1+\mathrm{x} 2>=7$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=12 x_{1}+8 x_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+2 x_{2} \geq 6 \\
& 3 x_{1}+x_{2} \geq 7 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

In order to apply the dual simplex method, convert $\operatorname{Min} \mathrm{Z}$ to $\operatorname{Max} \mathrm{Z}$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-12 x_{1}-8 x_{2}$
subject to
$-2 x_{1}-2 x_{2} \leq-6$
$-3 x_{1}-x_{2} \leq-7$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-12 x_{1}-8 x_{2}+0 S_{1}+0 S_{2}$
subject to
$-2 x_{1}-2 x_{2}+S_{1}=-6$
$-3 x_{1}-x_{2}+S_{2}=-7$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-12	-8	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	-6	-2	-2	1	0
about:blank						

$\boldsymbol{S}_{\mathbf{2}}$	0	$\mathbf{- 7}$	$\mathbf{(- 3)}$	-1	0	1
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$C_{j}-Z_{j}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
		Ratio $=\frac{C_{j}-Z_{j}}{S_{2}, j}$ and $S_{2}, j<0$	$4 \uparrow$	-8	0	0
		8	---	---		

Minimum negative X_{B} is -7 and its row index is 2 . So, the leaving basis variable is S_{2}.
Minimum positive ratio is 4 and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -3 .
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=-3$
R_{2} (new) $=R_{2}($ old $) \div-3$
R_{1} (new) $=R_{1}$ (old) $+2 R_{2}$ (new)

Iteration-2		C_{j}	-12	-8	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}
S_{1}	0	- $-\frac{4}{3}$	0	$\left(-\frac{4}{3}\right)$	1	$-\frac{2}{3}$
x_{1}	-12	$\frac{7}{3}$	1	$\frac{1}{3}$	0	$-\frac{1}{3}$
$Z=-28$		Z_{j}	-12	-4	0	4
		$C_{j}-Z_{j}$	0	-4	0	-4
		$\begin{gathered} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{1}, j} \\ \text { and } S_{1}, j<0 \end{gathered}$	---	$3 \uparrow$	---	6

Minimum negative X_{B} is $-\frac{4}{3}$ and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is 3 and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is $-\frac{4}{3}$.

Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=-\frac{4}{3}$
$R_{1}($ new $)=R_{1}($ old $) \times-\frac{3}{4}$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{3} R_{1}$ (new)

Iteration-3		C_{j}	-12	-8	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
x_{2}	-8	1	0	1	$-\frac{3}{4}$	$\frac{1}{2}$
x_{1}	-12	2	1	0	$\frac{1}{4}$	$-\frac{1}{2}$
$\boldsymbol{Z}=-\mathbf{3 2}$		$Z_{\boldsymbol{j}}$	$\mathbf{- 1 2}$	$\mathbf{- 8}$	$\mathbf{3}$	$\mathbf{2}$
	$C_{j}-Z_{j}$	0	0	-3	-2	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=2, x_{2}=1$
$\operatorname{Max} Z=-32$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=x 1+2 x 2$
subject to
$2 \times 1+\mathrm{x} 2>=4$
$\mathrm{x} 1+2 \times 2<=7$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=x_{1}+2 x_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \geq 4 \\
x_{1}+2 x_{2} & \leq 7
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-x_{1}-2 x_{2}$
subject to
$-2 x_{1}-x_{2} \leq-4$

$$
x_{1}+2 x_{2} \leq 7
$$

and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-x_{1}-2 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
-2 x_{1}-x_{2}+S_{1} & =-4 \\
x_{1}+2 x_{2}+S_{2} & =7
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-1	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	-4	$\mathbf{(- 2)}$	-1	1	0
about:blank						

S_{2}	0	7	1	2	0	1
$\boldsymbol{Z}=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
		$C_{j}-Z_{j}$	-1	-2	0	0
		Ratio $=\frac{C_{j}-Z_{j}}{S_{1}, j}$ and $S_{1}, j<0$	$\frac{1}{2} \uparrow$	2	---	--e

Minimum negative X_{B} is -4 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is $\frac{1}{2}$ and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -2 .
Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=-2$
$R_{1}($ new $)=R_{1}($ old $) \div-2$
R_{2} (new) $=R_{2}$ (old) $-R_{1}$ (new)

Iteration-2		C_{j}	-1	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
x_{1}	-1	2	1	$\frac{1}{2}$	$-\frac{1}{2}$	0
S_{2}	0	5	0	$\frac{3}{2}$	$\frac{1}{2}$	1
$\boldsymbol{Z}=-\mathbf{2}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$-\mathbf{1}$	$-\frac{1}{2}$	$\frac{\mathbf{1}}{\mathbf{2}}$	$\mathbf{0}$
		$C_{j}-Z_{j}$	0	$-\frac{3}{2}$	$-\frac{1}{2}$	0

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=2, x_{2}=0$
$\operatorname{Max} Z=-2$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=\times 1+2 \times 2+2 \times 3$
subject to
$\mathrm{x} 1+\mathrm{x} 2+2 \times 3>=12$
$\mathrm{x} 1+2 \times 2+4 \times 3>=14$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Min} Z=x_{1}+2 x_{2}+2 x_{3}$
subject to

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3} \geq 12 \\
& x_{1}+2 x_{2}+4 x_{3} \geq 14
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$;

In order to apply the dual simplex method, convert $\operatorname{Min} \mathrm{Z}$ to $\operatorname{Max} \mathrm{Z}$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-x_{1}-2 x_{2}-2 x_{3}$
subject to

- $x_{1}-x_{2}-2 x_{3} \leq-12$
- $x_{1}-2 x_{2}-4 x_{3} \leq-14$
and $x_{1}, x_{2}, x_{3} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-x_{1}-2 x_{2}-2 x_{3}+0 S_{1}+0 S_{2}$
subject to

- $x_{1}-x_{2}-2 x_{3}+S_{1}=-12$
$-x_{1}-2 x_{2}-4 x_{3}+S_{2}=-14$
and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-1	-2	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	-12	-1	-1	-2	1	0

S_{2}	0	-14	-1	-2	$\mathbf{(- 4)}$	0	1
$Z=\mathbf{0}$		Z_{j}	$C_{j}-Z_{j}$	-1	-2	-2	0
		$C_{j}-Z_{j}$ Ratio $=\frac{S_{2}, j}{}$ and $S_{2}, j<0$	1	1	$\frac{1}{2} \uparrow$	---	$\mathbf{0}$

Minimum negative X_{B} is -14 and its row index is 2 . So, the leaving basis variable is S_{2}.
Minimum positive ratio is $\frac{1}{2}$ and its column index is 3 . So, the entering variable is x_{3}.
\therefore The pivot element is -4 .
Entering $=x_{3}$, Departing $=S_{2}$, Key Element $=-4$
$R_{2}($ new $)=R_{2}($ old $) \div-4$
$R_{1}($ new $)=R_{1}($ old $)+2 R_{2}($ new $)$

Iteration-2		C_{j}	-1	-2	-2	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}
S_{1}	0	-5	$\left(-\frac{1}{2}\right)$	0	0	1	$-\frac{1}{2}$
x_{3}	-2	$\frac{7}{2}$	$\frac{1}{4}$	$\frac{1}{2}$	1	0	- $\frac{1}{4}$
$Z=-7$		Z_{j}	- $\frac{1}{2}$	-1	-2	0	$\frac{1}{2}$
		$C_{j}-Z_{j}$	- $\frac{1}{2}$	-1	0	0	- $\frac{1}{2}$
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{1}, j} \\ \text { and } S_{1}, j<0 \end{array}$	$1 \uparrow$	---	---	---	1

Minimum negative X_{B} is -5 and its row index is 1 . So, the leaving basis variable is S_{1}.

Minimum positive ratio is 1 and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is $-\frac{1}{2}$.

Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=-\frac{1}{2}$
$R_{1}($ new $)=R_{1}($ old $) \times-2$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{4} R_{1}($ new $)$

Iteration-3		C_{j}	-1	-2	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
x_{1}	-1	10	1	0	0	-2	1
x_{3}	-2	1	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$-\frac{1}{2}$
$\boldsymbol{Z}=-\mathbf{1 2}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$-\mathbf{1}$	$\mathbf{- 1}$	$-\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
	$C_{j}-Z_{j}$	0	-1	0	-1	0	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :
$x_{1}=10, x_{2}=0, x_{3}=1$
$\operatorname{Max} Z=-12$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=\mathrm{x} 1+\mathbf{2 x} 2$
subject to
$-2 \times 1-\times 2<=-4$
$-\mathrm{x} 1-2 \times 2<=-7$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=x_{1}+2 x_{2}$
subject to
$-2 x_{1}-x_{2} \leq-4$
$-x_{1}-2 x_{2} \leq-7$
and $x_{1}, x_{2} \geq 0$;

In order to apply the dual simplex method, convert Min Z to Max Z
Problem is
$\operatorname{Max} Z=-x_{1}-2 x_{2}$
subject to
$-2 x_{1}-x_{2} \leq-4$
$-x_{1}-2 x_{2} \leq-7$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-x_{1}-2 x_{2}+0 S_{1}+0 S_{2}$
subject to
$-2 x_{1}-x_{2}+S_{1}=-4$
$-x_{1}-2 x_{2}+S_{2}=-7$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-1	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	-4	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$
S_{1}	0	-7	-2	-1	1	0
	0	$(-\mathbf{1})$	-2	0	1	

$\boldsymbol{S}_{\mathbf{2}}$						
$\boldsymbol{Z}=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$C_{j}-Z_{j}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
		-1	-2	0	0	
	Ratio $=\frac{C_{j}-Z_{j}}{S_{2}, j}$ and $S_{2}, j<0$	$1 \uparrow \uparrow$	1	---	---	

Minimum negative X_{B} is -7 and its row index is 2 . So, the leaving basis variable is S_{2}.
Minimum positive ratio is 1 and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -1 .
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=-1$
R_{2} (new) $=R_{2}($ old $) \div-1$
R_{1} (new) $=R_{1}$ (old) $+2 R_{2}$ (new)

Iteration-2		C_{j}	-1	-2	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	10	0	3	1	-2
x_{1}	-1	7	1	2	0	-1
$\boldsymbol{Z}=-7$		$Z_{\boldsymbol{j}}$	$-\mathbf{1}$	$-\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
		$C_{j}-Z_{j}$	0	0	0	-1
	Ratio	---	---	$-\boldsymbol{-}$	$\boldsymbol{- - -}$	

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=7, x_{2}=0$
$\operatorname{Max} Z=-7$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using dual-simplex method
MIN $Z=x 1+x 2$
subject to
$\mathrm{x} 1+3 \times 2>=6$
$2 \times 1+\mathrm{x} 2>=8$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=x_{1}+x_{2}$
subject to

$$
\begin{array}{r}
x_{1}+3 x_{2} \geq 6 \\
2 x_{1}+x_{2} \geq 8 \\
\text { and } x_{1}, x_{2} \geq 0
\end{array}
$$

In order to apply the dual simplex method, convert $\operatorname{Min} \mathrm{Z}$ to $\operatorname{Max} \mathrm{Z}$ and all \geq constraint to \leq constraint by multiply -1 .

Problem is

$\operatorname{Max} Z=-x_{1}-x_{2}$
subject to

- $x_{1}-3 x_{2} \leq-6$
$-2 x_{1}-x_{2} \leq-8$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=-x_{1}-x_{2}+0 S_{1}+0 S_{2}$
subject to
$-x_{1}-3 x_{2}+S_{1}=-6$
$-2 x_{1}-x_{2}+S_{2}=-8$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	-1	-1	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
S_{1}	0	-6	-1	-3	1	0
about:blank						

$\boldsymbol{S}_{\mathbf{2}}$	0	-8	$\mathbf{(- 2)}$	-1	0	1
$\boldsymbol{Z}=\mathbf{0}$		Z_{j}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
		$C_{j}-Z_{j}$	-1	-1	0	0
	Ratio $=\frac{C_{j}-Z_{j}}{S_{2}, j}$ and $S_{2}, j<0$	$\frac{1}{2} \uparrow$	1	---	---	

Minimum negative X_{B} is -8 and its row index is 2 . So, the leaving basis variable is S_{2}.
Minimum positive ratio is $\frac{1}{2}$ and its column index is 1 . So, the entering variable is x_{1}.
\therefore The pivot element is -2 .
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=-2$
R_{2} (new) $=R_{2}($ old $) \div-2$
R_{1} (new) $=R_{1}$ (old) $+R_{2}$ (new)

Iteration-2		C_{j}	-1	-1	0	0
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}
S_{1}	0	-2	0	$\left(-\frac{5}{2}\right)$	1	$-\frac{1}{2}$
x_{1}	-1	4	1	$\frac{1}{2}$	0	$-\frac{1}{2}$
$Z=-4$		Z_{j}	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$
		$C_{j}-Z_{j}$	0	- $\frac{1}{2}$	0	$-\frac{1}{2}$
		$\begin{array}{r} \text { Ratio }=\frac{C_{j}-Z_{j}}{S_{1}, j} \\ \text { and } S_{1}, j<0 \end{array}$	---	$\frac{1}{5} \uparrow$	---	1

Minimum negative X_{B} is -2 and its row index is 1 . So, the leaving basis variable is S_{1}.
Minimum positive ratio is $\frac{1}{5}$ and its column index is 2 . So, the entering variable is x_{2}.
\therefore The pivot element is $-\frac{5}{2}$.

Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=-\frac{5}{2}$
$R_{1}($ new $)=R_{1}($ old $) \times-\frac{2}{5}$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{2} R_{1}($ new $)$

Iteration-3		C_{j}	-1	-1	0	0
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$
x_{2}	-1	$\frac{4}{5}$	0	1	$-\frac{2}{5}$	$\frac{1}{5}$
x_{1}	-1	$\frac{18}{5}$	1	0	$\frac{1}{5}$	$-\frac{3}{5}$
$\boldsymbol{Z}=-\frac{\mathbf{2 2}}{\mathbf{5}}$		Z_{j}	$-\mathbf{1}$	$-\mathbf{1}$	$\frac{\mathbf{1}}{\mathbf{5}}$	$\frac{\mathbf{2}}{\mathbf{5}}$
		$C_{j}-Z_{j}$	0	0	$-\frac{1}{5}$	$-\frac{2}{5}$

Since all $C_{j}-Z_{j} \leq 0$ and all $X_{B i} \geq 0$ thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{18}{5}, x_{2}=\frac{4}{5}$
$\operatorname{Max} Z=-\frac{22}{5}$

Solution is provided by AtoZmath.com

