Find solution using dual-simplex method MAX Z = -2x1 - 2x2 - 4x3subject to 2x1 + 3x2 + 5x3 >= 23x1 + x2 + 7x3 <= 3x1 + 4x2 + 6x3 <= 5and x1,x2,x3 >= 0

Solution: Problem is

 $Max Z = -2x_1 - 2x_2 - 4x_3$

subject to

 $2x_{1} + 3x_{2} + 5x_{3} \ge 2$ $3x_{1} + x_{2} + 7x_{3} \le 3$ $x_{1} + 4x_{2} + 6x_{3} \le 5$ and $x_{1}, x_{2}, x_{3} \ge 0$;

In order to apply the dual simplex method, convert all \geq constraint to \leq constraint by multiply -1.

Problem is

Max Z = $-2x_1 - 2x_2 - 4x_3$ subject to $-2x_1 - 3x_2 - 5x_3 \le -2$ $3x_1 + x_2 + 7x_3 \le 3$ $x_1 + 4x_2 + 6x_3 \le 5$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = -2x_1 - 2x_2 - 4x_3 + 0S_1 + 0S_2 + 0S_3$ subject to

Iteration-1		C_j	-2	-2	-4	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
<i>S</i> ₁	0	-2	-2	(-3)	- 5	1	0	0
<i>S</i> ₂	0	3	3	1	7	0	1	0
<i>S</i> ₃	0	5	1	4	6	0	0	1
Z = 0		Z_j	0	0	0	0	0	0
		C_j - Z_j	-2	-2	-4	0	0	0
		$Ratio = \frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$	1	$\frac{2}{3}$ \uparrow	$\frac{4}{5}$			

Minimum negative X_B is -2 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is $\frac{2}{3}$ and its column index is 2. So, the entering variable is x_2 .

 \therefore The pivot element is -3.

Entering = x_2 , Departing = S_1 , Key Element = -3

 $R_1(\text{new}) = R_1(\text{old}) \div -3$

 $R_2(\text{new}) = R_2(\text{old}) - R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - 4R_1(\text{new})$

Iteration-2		C_j	-2	-2	-4	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
x ₂	-2	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{5}{3}$	$-\frac{1}{3}$	0	0
S ₂	0	$\frac{7}{3}$	$\frac{7}{3}$	0	$\frac{16}{3}$	$\frac{1}{3}$	1	0
S ₃	0	$\frac{7}{3}$	$-\frac{5}{3}$	0	$-\frac{2}{3}$	$\frac{4}{3}$	0	1
$Z = -\frac{4}{3}$		Z_j	$-\frac{4}{3}$	-2	$-\frac{10}{3}$	$\frac{2}{3}$	0	0

	$C_j - Z_j$	$-\frac{2}{3}$	0	$-\frac{2}{3}$	$-\frac{2}{3}$	0	0
	Ratio						

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :

 $x_1 = 0, x_2 = \frac{2}{3}, x_3 = 0$

 $\operatorname{Max} Z = -\frac{4}{3}$

Find solution using dual-simplex method MAX Z = -x1 - 2x2subject to $-2x1 - x2 \le -4$ $-x1 - 2x2 \le -7$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = -x_1 - 2x_2$ subject to $-2x_1 - x_2 \le -4$ $-x_1 - 2x_2 \le -7$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -x_1 - 2x_2 + 0S_1 + 0S_2$ subject to $-2x_1 - x_2 + S_1 = -4$ $-x_1 - 2x_2 + S_2 = -7$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	- 1	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-4	-2	- 1	1	0
<i>S</i> ₂	0	-7	(- 1)	-2	0	1
Z = 0		Z_j	0	0	0	0
		C_j - Z_j	- 1	-2	0	0
		Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	1 ↑	1		

Minimum negative X_B is -7 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is 1 and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -1.

Entering $= x_1$, Departing $= S_2$, Key Element = -1

 $R_2(\text{new}) = R_2(\text{old}) \div -1$

 $R_1(\text{new}) = R_1(\text{old}) + 2R_2(\text{new})$

Iteration-2		C_j	- 1	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
S ₁	0	10	0	3	1	-2
x ₁	- 1	7	1	2	0	- 1
Z = -7		Z_j	-1	-2	0	1
		$C_j - Z_j$	0	0	0	- 1
		Ratio				

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 7, x_2 = 0$

 $\operatorname{Max} Z = -7$

Find solution using dual-simplex method MIN Z = 2x1 + x2subject to $3x2 \ge 6$ $3x1 + 2x2 \ge 8$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 2x_1 + x_2$ subject to $3x_2 \ge 6$

 $3x_1 + 2x_2 \ge 8$ and $x_1, x_2 \ge 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

 $Max Z = -2x_1 - x_2$
subject to
 $-3x_2 \le -6$

- $3x_1 - 2x_2 \le -8$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -2x_1 - x_2 + 0S_1 + 0S_2$ subject to

$$-3x_2 + S_1 = -6$$

$$3x_1 - 2x_2 + S_2 = -8$$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	-2	- 1	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-6	0	-3	1	0

<i>S</i> ₂	0	- 8	-3	(-2)	0	1
Z = 0		Z_j	0	0	0	0
		C_j - Z_j	-2	- 1	0	0
		Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	$\frac{2}{3}$	$\frac{1}{2}$ \uparrow		

Minimum negative X_B is -8 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is $\frac{1}{2}$ and its column index is 2. So, the entering variable is x_2 .

 \therefore The pivot element is -2.

Entering $= x_2$, Departing $= S_2$, Key Element = -2

$$R_2(\text{new}) = R_2(\text{old}) \div -2$$

 $R_1(\text{new}) = R_1(\text{old}) + 3R_2(\text{new})$

Iteration-2		C _j	-2	- 1	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
S ₁	0	6	$\frac{9}{2}$	0	1	$-\frac{3}{2}$
<i>x</i> ₂	- 1	4	$\frac{3}{2}$	1	0	$-\frac{1}{2}$
Z = -4		Z_j	$-\frac{3}{2}$	-1	0	$\frac{1}{2}$
		C_j - Z_j	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$
		Ratio				

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :

 $x_1 = 0, x_2 = 4$

 $\operatorname{Max} Z = -4$

12/23/2017 Solution is provided by AtoZmath.com

Find solution using dual-simplex method MIN Z = 3x1 + 4x2subject to $2x1 + 3x2 \ge 90$ $4x1 + 3x2 \ge 120$ and $x1,x2 \ge 0$

Solution: Problem is

 $\begin{array}{lll} \operatorname{Min} Z &=& 3\,x_1 \,+\, 4\,x_2 \\ \text{subject to} \\ &2\,x_1 \,+\, 3\,x_2 \geq 90 \\ &4\,x_1 \,+\, 3\,x_2 \geq 120 \\ & \text{and}\,x_1, x_2 \geq 0; \end{array}$

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -3x_1 - 4x_2$ subject to $-2x_1 - 3x_2 \le -90$ $-4x_1 - 3x_2 \le -120$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -3x_1 - 4x_2 + 0S_1 + 0S_2$ subject to $-2x_1 - 3x_2 + S_1 = -90$

$$-4x_1 - 3x_2 + S_2 = -120$$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	-3	-4	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂
<i>S</i> ₁	0	-90	-2	-3	1	0

<i>S</i> ₂	0	- 120	(- 4)	-3	0	1
Z = 0		Z_j	0	0	0	0
		$C_j - Z_j$	-3	-4	0	0
		Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	$\frac{3}{4}$ \uparrow	$\frac{4}{3}$		

Minimum negative X_B is -120 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is $\frac{3}{4}$ and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -4.

Entering $= x_1$, Departing $= S_2$, Key Element = -4

$$R_2(\text{new}) = R_2(\text{old}) \div -4$$

 $R_1(\text{new}) = R_1(\text{old}) + 2R_2(\text{new})$

Iteration-2		C_j	-3	-4	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-30	0	$\left(-\frac{3}{2}\right)$	1	$-\frac{1}{2}$
<i>x</i> ₁	-3	30	1	$\frac{3}{4}$	0	$-\frac{1}{4}$
Z = -90		Z_j	-3	$-\frac{9}{4}$	0	$\frac{3}{4}$
		$C_j - Z_j$	0	$-\frac{7}{4}$	0	$-\frac{3}{4}$
		Ratio = $\frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$		$\frac{7}{6}$ \uparrow		$\frac{3}{2}$

Minimum negative X_B is -30 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is
$$\frac{7}{6}$$
 and its column index is 2. So, the entering variable is x_2 .

 \therefore The pivot element is $-\frac{3}{2}$.

Entering = x_2 , Departing = S_1 , Key Element = $-\frac{3}{2}$

 $R_1(\text{new}) = R_1(\text{old}) \times -\frac{2}{3}$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{3}{4}R_1(\text{new})$

Iteration-3		C_j	-3	-4	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂
x ₂	-4	20	0	1	$-\frac{2}{3}$	$\frac{1}{3}$
<i>x</i> ₁	-3	15	1	0	$\frac{1}{2}$	$-\frac{1}{2}$
Z = -125		Z_j	-3	-4	$\frac{7}{6}$	$\frac{1}{6}$
		$C_j - Z_j$	0	0	$-\frac{7}{6}$	$-\frac{1}{6}$
		Ratio				

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 15, x_2 = 20$

Max Z = -125

12/23/2017

Print This Solution Close This Solution

Find solution using dual-simplex method MIN Z = 2x1 + 2x2 + 4x3subject to $2x1 + 3x2 + 5x3 \ge 2$ 3x1 + x2 + 7x3 <= 3 x1 + 4x2 + 6x3 <= 5and $x1,x2,x3 \ge 0$

Solution: Problem is

 $\operatorname{Min} Z = 2x_1 + 2x_2 + 4x_3$

subject to

 $2x_{1} + 3x_{2} + 5x_{3} \ge 2$ $3x_{1} + x_{2} + 7x_{3} \le 3$ $x_{1} + 4x_{2} + 6x_{3} \le 5$ and $x_{1}, x_{2}, x_{3} \ge 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max Z = $-2x_1 - 2x_2 - 4x_3$ subject to $-2x_1 - 3x_2 - 5x_3 \le -2$ $3x_1 + x_2 + 7x_3 \le 3$ $x_1 + 4x_2 + 6x_3 \le 5$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = -2x_1 - 2x_2 - 4x_3 + 0S_1 + 0S_2 + 0S_3$ subject to

Iteration-1		C_j	-2	-2	-4	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
<i>S</i> ₁	0	-2	-2	(-3)	- 5	1	0	0
<i>S</i> ₂	0	3	3	1	7	0	1	0
<i>S</i> ₃	0	5	1	4	6	0	0	1
Z = 0		Z_j	0	0	0	0	0	0
		C_j - Z_j	-2	-2	-4	0	0	0
		$Ratio = \frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$	1	$\frac{2}{3}$ \uparrow	$\frac{4}{5}$			

Minimum negative X_B is -2 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is $\frac{2}{3}$ and its column index is 2. So, the entering variable is x_2 .

 \therefore The pivot element is -3.

Entering = x_2 , Departing = S_1 , Key Element = -3

 $R_1(\text{new}) = R_1(\text{old}) \div -3$

 $R_2(\text{new}) = R_2(\text{old}) - R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - 4R_1(\text{new})$

Iteration-2		C_j	-2	-2	-4	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
x ₂	-2	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{5}{3}$	$-\frac{1}{3}$	0	0
S ₂	0	$\frac{7}{3}$	$\frac{7}{3}$	0	$\frac{16}{3}$	$\frac{1}{3}$	1	0
S ₃	0	$\frac{7}{3}$	$-\frac{5}{3}$	0	$-\frac{2}{3}$	$\frac{4}{3}$	0	1
$Z = -\frac{4}{3}$		Z_j	$-\frac{4}{3}$	-2	$-\frac{10}{3}$	$\frac{2}{3}$	0	0

	$C_j - Z_j$	$-\frac{2}{3}$	0	$-\frac{2}{3}$	$-\frac{2}{3}$	0	0
	Ratio						

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :

 $x_1 = 0, x_2 = \frac{2}{3}, x_3 = 0$

 $\operatorname{Max} Z = -\frac{4}{3}$

Find solution using dual-simplex method MIN Z = 2x1 + x2 + 4x3subject to $2x1 + 3x2 + 3x3 \ge 12$ $3x1 + 2x2 + x3 \ge 18$ and $x1,x2,x3 \ge 0$

Solution: Problem is

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -2x_1 - x_2 - 4x_3$ subject to $-2x_1 - 3x_2 - 3x_3 \le -12$ $-3x_1 - 2x_2 - x_3 \le -18$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -2x_1 - x_2 - 4x_3 + 0S_1 + 0S_2$ subject to

$$-2x_1 - 3x_2 - 3x_3 + S_1 = -12$$

$$-3x_1 - 2x_2 - x_3 + S_2 = -18$$

and $x_1, x_2, x_3, S_1, S_2 \ge 0$

Iteration-1		C_j	-2	- 1	-4	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂
S ₁	0	-12	-2	-3	-3	1	0

12	2/23/2017		Dual sim	plex method				
	<i>S</i> ₂	0	-18	-3	(-2)	- 1	0	1
	Z = 0		Z_j	0	0	0	0	0
			C_j - Z_j	-2	- 1	-4	0	0
			Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	$\frac{2}{3}$	$\frac{1}{2}$ \uparrow	4		

Minimum negative X_B is -18 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is $\frac{1}{2}$ and its column index is 2. So, the entering variable is x_2 .

 \therefore The pivot element is -2.

Entering $= x_2$, Departing $= S_2$, Key Element = -2

$$R_2(\text{new}) = R_2(\text{old}) \div -2$$

 $R_1(\text{new}) = R_1(\text{old}) + 3R_2(\text{new})$

Iteration-2		C_j	-2	- 1	-4	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	15	$\frac{5}{2}$	0	$-\frac{3}{2}$	1	$-\frac{3}{2}$
x ₂	- 1	9	$\frac{3}{2}$	1	$\frac{1}{2}$	0	$-\frac{1}{2}$
Z = -9		Z_j	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$
		C_j - Z_j	$-\frac{1}{2}$	0	$-\frac{7}{2}$	0	$-\frac{1}{2}$
		Ratio					

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 9, x_3 = 0$

 $\operatorname{Max} Z = -9$

12/23/2017 Solution is provided by AtoZmath.com

Find solution using dual-simplex method MIN Z = 3x1 + 2x2 + x3subject to $2x1 + x2 + 4x3 \ge 15$ $x1 + 4x2 + 3x3 \ge 21$ and $x1,x2,x3 \ge 0$

Solution: Problem is

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -3x_1 - 2x_2 - x_3$ subject to $-2x_1 - x_2 - 4x_3 \le -15$ $-x_1 - 4x_2 - 3x_3 \le -21$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -3x_1 - 2x_2 - x_3 + 0S_1 + 0S_2$ subject to

and $x_1, x_2, x_3, S_1, S_2 \ge 0$

Iteration-1		C_j	-3	-2	- 1	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-15	-2	- 1	-4	1	0

12/23/2017		Dual sim	plex method				
<i>S</i> ₂	0	-21	- 1	-4	(-3)	0	1
Z = 0		Z_j	0	0	0	0	0
		C_j - Z_j	-3	-2	- 1	0	0
		Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	3	$\frac{1}{2}$	$\frac{1}{3}$ \uparrow		

Minimum negative X_B is -21 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is $\frac{1}{3}$ and its column index is 3. So, the entering variable is x_3 .

 \therefore The pivot element is -3.

Entering $= x_3$, Departing $= S_2$, Key Element = -3

$$R_2(\text{new}) = R_2(\text{old}) \div -3$$

 $R_1(\text{new}) = R_1(\text{old}) + 4R_2(\text{new})$

Iteration-2		C_j	- 3	-2	- 1	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	13	$-\frac{2}{3}$	$\frac{13}{3}$	0	1	$-\frac{4}{3}$
<i>x</i> ₃	- 1	7	$\frac{1}{3}$	$\frac{4}{3}$	1	0	$-\frac{1}{3}$
Z = -7		Z_{j}	$-\frac{1}{3}$	$-\frac{4}{3}$	-1	0	$\frac{1}{3}$
		C_j - Z_j	$-\frac{8}{3}$	$-\frac{2}{3}$	0	0	$-\frac{1}{3}$
		Ratio					

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 0, x_3 = 7$

 $\operatorname{Max} Z = -7$

12/23/2017 Solution is provided by AtoZmath.com

Find solution using dual-simplex method MIN Z = 3x1 + x2 + 2x3subject to $4x1 + x2 + 4x3 \ge 12$ $x1 + 3x2 + 4x3 \ge 10$ $2x1 + 2x2 + x3 \ge 6$ and $x1,x2,x3 \ge 0$

Solution: Problem is

 $Min Z = 3x_1 + x_2 + 2x_3$

subject to

 $4x_{1} + x_{2} + 4x_{3} \ge 12$ $x_{1} + 3x_{2} + 4x_{3} \ge 10$ $2x_{1} + 2x_{2} + x_{3} \ge 6$ and $x_{1}, x_{2}, x_{3} \ge 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -3x_1 - x_2 - 2x_3$ subject to $-4x_1 - x_2 - 4x_3 \le -12$ $-x_1 - 3x_2 - 4x_3 \le -10$ $-2x_1 - 2x_2 - x_3 \le -6$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = -3x_1 - x_2 - 2x_3 + 0S_1 + 0S_2 + 0S_3$ subject to

$$-4x_{1} - x_{2} - 4x_{3} + S_{1} = -12$$

$$-x_{1} - 3x_{2} - 4x_{3} + S_{2} = -10$$

$$-2x_{1} - 2x_{2} - x_{3} + S_{3} = -6$$
and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \ge 0$

Iteration-1		C_j	-3	- 1	-2	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
<i>S</i> ₁	0	-12	- 4	- 1	(- 4)	1	0	0
<i>S</i> ₂	0	- 10	- 1	-3	-4	0	1	0
S ₃	0	- 6	-2	-2	- 1	0	0	1
Z = 0		Z_j	0	0	0	0	0	0
		C_j - Z_j	- 3	- 1	-2	0	0	0
		$Ratio = \frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$	$\frac{3}{4}$	1	$\frac{1}{2}$ \uparrow			

Minimum negative X_B is -12 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is $\frac{1}{2}$ and its column index is 3. So, the entering variable is x_3 .

 \therefore The pivot element is -4.

Entering = x_3 , Departing = S_1 , Key Element = -4

 $R_1(\text{new}) = R_1(\text{old}) \div -4$

 $R_2(\text{new}) = R_2(\text{old}) + 4R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) + R_1(\text{new})$

Iteration-2		C_j	-3	- 1	-2	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
<i>x</i> ₃	-2	3	1	$\frac{1}{4}$	1	$-\frac{1}{4}$	0	0
S ₂	0	2	3	-2	0	- 1	1	0
<i>S</i> ₃	0	-3	- 1	$\left(-\frac{7}{4}\right)$	0	$-\frac{1}{4}$	0	1
Z = -6		Z_{j}	-2	$-\frac{1}{2}$	-2	$\frac{1}{2}$	0	0

12/20/2011		Dual Simple	a method				
	C_j - Z_j	- 1	$-\frac{1}{2}$	0	$-\frac{1}{2}$	0	0
	Ratio = $\frac{C_j - Z_j}{S_3, j}$ and $S_3, j < 0$	1	$\frac{2}{7}$ \uparrow		2		

Minimum negative X_B is -3 and its row index is 3. So, the leaving basis variable is S_3 .

Minimum positive ratio is $\frac{2}{7}$ and its column index is 2. So, the entering variable is x_2 .

 $\therefore \text{ The pivot element is } -\frac{7}{4}.$

Entering = x_2 , Departing = S_3 , Key Element = $-\frac{7}{4}$

 $R_3(\text{new}) = R_3(\text{old}) \times -\frac{4}{7}$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{4}R_3(\text{new})$$

 $R_2(\text{new}) = R_2(\text{old}) + 2R_3(\text{new})$

Iteration-3		C_j	- 3	- 1	-2	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	S ₃
<i>x</i> ₃	-2	$\frac{18}{7}$	$\frac{6}{7}$	0	1	$-\frac{2}{7}$	0	$\frac{1}{7}$
<i>S</i> ₂	0	$\frac{38}{7}$	$\frac{29}{7}$	0	0	$-\frac{5}{7}$	1	$-\frac{8}{7}$
x ₂	- 1	$\frac{12}{7}$	$\frac{4}{7}$	1	0	$\frac{1}{7}$	0	$-\frac{4}{7}$
$Z = -\frac{48}{7}$		Z_j	$-\frac{16}{7}$	-1	-2	$\frac{3}{7}$	0	$\frac{2}{7}$
		<i>C_j</i> - <i>Z_j</i>	$-\frac{5}{7}$	0	0	$-\frac{3}{7}$	0	$-\frac{2}{7}$
		Ratio						

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :

$$x_1 = 0, x_2 = \frac{12}{7}, x_3 = \frac{18}{7}$$

 $\operatorname{Max} Z = -\frac{48}{7}$

Find solution using dual-simplex method MIN Z = 4x1 + 2x2subject to $4x1 + x2 \ge 14$ $x1 + 3x2 \ge 12$ and $x1,x2 \ge 0$

Solution: Problem is

Min Z = $4x_1 + 2x_2$ subject to $4x_1 + x_2 \ge 14$ $x_1 + 3x_2 \ge 12$ and $x_1, x_2 \ge 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -4x_1 - 2x_2$ subject to $-4x_1 - x_2 \le -14$ $-x_1 - 3x_2 \le -12$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -4x_1 - 2x_2 + 0S_1 + 0S_2$ subject to

$$-4x_1 - x_2 + S_1 = -14$$

- x₁ - 3x₂ + S₂ = -12

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	-4	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
S ₁	0	- 14	(-4)	- 1	1	0

S ₂	0	-12	-1	-3	0	1
Z = 0		Z_j	0	0	0	0
		C_j - Z_j	-4	-2	0	0
		Ratio = $\frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$	1 ↑	2		

Minimum negative X_B is -14 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is 1 and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -4.

Entering $= x_1$, Departing $= S_1$, Key Element = -4

 $R_1(\text{new}) = R_1(\text{old}) \div -4$

 $R_2(\text{new}) = R_2(\text{old}) + R_1(\text{new})$

Iteration-2		C_j	- 4	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>x</i> ₁	-4	$\frac{7}{2}$	1	$\frac{1}{4}$	$-\frac{1}{4}$	0
S ₂	0	$-\frac{17}{2}$	0	$\left(-\frac{11}{4}\right)$	$-\frac{1}{4}$	1
Z = -14		Z_j	-4	-1	1	0
		C_j - Z_j	0	- 1	- 1	0
		$Ratio = \frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$		$\frac{4}{11}$ \uparrow	4	

Minimum negative X_B is $-\frac{17}{2}$ and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is $\frac{4}{11}$ and its column index is 2. So, the entering variable is x_2 .

$$\therefore$$
 The pivot element is $-\frac{11}{4}$

Entering =
$$x_2$$
, Departing = S_2 , Key Element = $-\frac{11}{4}$

$$R_2(\text{new}) = R_2(\text{old}) \times -\frac{4}{11}$$

 $R_1(\text{new}) = R_1(\text{old}) - \frac{1}{4}R_2(\text{new})$

Iteration-3		C_j	-4	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂
<i>x</i> ₁	-4	$\frac{30}{11}$	1	0	$-\frac{3}{11}$	$\frac{1}{11}$
x ₂	-2	$\frac{34}{11}$	0	1	$\frac{1}{11}$	$-\frac{4}{11}$
$Z = -\frac{188}{11}$		Z_j	-4	-2	$\frac{10}{11}$	$\frac{4}{11}$
		$C_j - Z_j$	0	0	$-\frac{10}{11}$	$-\frac{4}{11}$
		Ratio				

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :

 $x_1 = \frac{30}{11}, x_2 = \frac{34}{11}$

Max $Z = -\frac{188}{11}$

Find solution using dual-simplex method

MIN Z = 5x1 + 8x2subject to $2x1 + 3x2 \ge 4$ $x1 - 2x2 \ge 5$ $x1 + x2 \ge 12$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 5x_1 + 8x_2$

subject to

 $2x_{1} + 3x_{2} \ge 4$ $x_{1} - 2x_{2} \ge 5$ $x_{1} + x_{2} \ge 12$ and $x_{1}, x_{2} \ge 0;$

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -5x_1 - 8x_2$ subject to $-2x_1 - 3x_2 \le -4$ $-x_1 + 2x_2 \le -5$ $-x_1 - x_2 \le -12$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = -5x_1 - 8x_2 + 0S_1 + 0S_2 + 0S_3$ subject to

Iteration-1		C_j	- 5	- 8	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃
S ₁	0	-4	-2	-3	1	0	0
<i>S</i> ₂	0	-5	- 1	2	0	1	0
<i>S</i> ₃	0	-12	(- 1)	- 1	0	0	1
Z = 0		Z_j	0	0	0	0	0
		C_j - Z_j	- 5	- 8	0	0	0
		Ratio = $\frac{C_j - Z_j}{S_{3,j}}$ and $S_{3,j} < 0$	5 ↑	8			

Minimum negative X_B is -12 and its row index is 3. So, the leaving basis variable is S_3 .

Minimum positive ratio is 5 and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -1.

Entering $= x_1$, Departing $= S_3$, Key Element = -1

 $R_3(\text{new}) = R_3(\text{old}) \div -1$

 $R_1(\text{new}) = R_1(\text{old}) + 2R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) + R_3(\text{new})$

Iteration-2		C_j	- 5	- 8	0	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	S ₃
S ₁	0	20	0	- 1	1	0	-2
<i>S</i> ₂	0	7	0	3	0	1	- 1
x ₁	- 5	12	1	1	0	0	- 1
Z = -60		Z_j	-5	-5	0	0	5
		C_j - Z_j	0	- 3	0	0	- 5
		Ratio					

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 12, x_2 = 0$

 $\operatorname{Max} Z = -60$

Find solution using dual-simplex method MIN Z = 10x1 + 20x2subject to $x1 + 2x2 \ge 6$ $x1 + 4x2 \ge 8$ and $x1,x2 \ge 0$

Solution: Problem is

Min Z = $10x_1 + 20x_2$ subject to $x_1 + 2x_2 \ge 6$ $x_1 + 4x_2 \ge 8$ and $x_1, x_2 \ge 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -10x_1 - 20x_2$ subject to $-x_1 - 2x_2 \le -6$ $-x_1 - 4x_2 \le -8$

and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -10x_1 - 20x_2 + 0S_1 + 0S_2$ subject to

$$-x_1 - 2x_2 + S_1 = -6$$

$$-x_1 - 4x_2 + S_2 = -8$$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	- 10	-20	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-6	-1	-2	1	0

<i>S</i> ₂	0	- 8	- 1	(- 4)	0	1
Z = 0		Z_j	0	0	0	0
		$C_j - Z_j$	- 10	-20	0	0
		$Ratio = \frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	10	5 ↑		

Minimum negative X_B is -8 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is 5 and its column index is 2. So, the entering variable is x_2 .

 \therefore The pivot element is -4.

Entering $= x_2$, Departing $= S_2$, Key Element = -4

 $R_2(\text{new}) = R_2(\text{old}) \div -4$

 $R_1(\text{new}) = R_1(\text{old}) + 2R_2(\text{new})$

Iteration-2		C_j	- 10	-20	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-2	$\left(-\frac{1}{2}\right)$	0	1	$-\frac{1}{2}$
x ₂	-20	2	$\frac{1}{4}$	1	0	$-\frac{1}{4}$
Z = -40		Z_j	-5	-20	0	5
		C_j - Z_j	- 5	0	0	- 5
		Ratio = $\frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$	10 ↑			10

Minimum negative X_B is -2 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is 10 and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is $-\frac{1}{2}$.

Entering =
$$x_1$$
, Departing = S_1 , Key Element = $-\frac{1}{2}$

$$R_1(\text{new}) = R_1(\text{old}) \times -2$$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{4}R_1(\text{new})$$

Iteration-3		C_j	- 10	-20	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂
x ₁	- 10	4	1	0	-2	1
x ₂	-20	1	0	1	$\frac{1}{2}$	$-\frac{1}{2}$
Z = -60		Z_j	-10	-20	10	0
		C_j - Z_j	0	0	- 10	0
		Ratio				

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 4, x_2 = 1$

 $\operatorname{Max} Z = -60$

Find solution using dual-simplex method MIN Z = 12x1 + 8x2subject to $2x1 + 2x2 \ge 6$ $3x1 + x2 \ge 7$ and $x1,x2 \ge 0$

Solution: Problem is

Min Z = $12x_1 + 8x_2$ subject to $2x_1 + 2x_2 \ge 6$ $3x_1 + x_2 \ge 7$ and $x_1, x_2 \ge 0$;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -12x_1 - 8x_2$ subject to $-2x_1 - 2x_2 \le -6$ $-3x_1 - x_2 \le -7$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -12x_1 - 8x_2 + 0S_1 + 0S_2$ subject to $-2x_1 - 2x_2 + S_1 = -6$

$$-2x_1 - 2x_2 + S_1 = -6$$

$$-3x_1 - x_2 + S_2 = -7$$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	-12	- 8	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-6	-2	-2	1	0

S ₂	0	-7	(-3)	-1	0	1
Z = 0		Z_j	0	0	0	0
		C_j - Z_j	- 12	- 8	0	0
		Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	4 ↑	8		

Minimum negative X_B is -7 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is 4 and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -3.

Entering $= x_1$, Departing $= S_2$, Key Element = -3

 $R_2(\text{new}) = R_2(\text{old}) \div -3$

 $R_1(\text{new}) = R_1(\text{old}) + 2R_2(\text{new})$

Iteration-2		C_j	- 12	- 8	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	$-\frac{4}{3}$	0	$\left(-\frac{4}{3}\right)$	1	$-\frac{2}{3}$
<i>x</i> ₁	-12	$\frac{7}{3}$	1	$\frac{1}{3}$	0	$-\frac{1}{3}$
Z = -28		Z_j	-12	-4	0	4
		C_j - Z_j	0	-4	0	-4
		Ratio = $\frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$		3 ↑		6

Minimum negative X_B is $-\frac{4}{3}$ and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is 3 and its column index is 2. So, the entering variable is x_2 .

 $\therefore \text{ The pivot element is } -\frac{4}{3}.$

Entering =
$$x_2$$
, Departing = S_1 , Key Element = $-\frac{4}{3}$

$$R_1(\text{new}) = R_1(\text{old}) \times -\frac{3}{4}$$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{3}R_1(\text{new})$$

Iteration-3		C_j	-12	- 8	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂
x ₂	- 8	1	0	1	$-\frac{3}{4}$	$\frac{1}{2}$
<i>x</i> ₁	-12	2	1	0	$\frac{1}{4}$	$-\frac{1}{2}$
Z = -32		Z_j	-12	- 8	3	2
		$C_j - Z_j$	0	0	- 3	-2
		Ratio				

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 2, x_2 = 1$

 $\operatorname{Max} Z = -32$

Find solution using dual-simplex method MIN Z = x1 + 2x2subject to $2x1 + x2 \ge 4$ $x1 + 2x2 \le 7$ and $x1,x2 \ge 0$

Solution: Problem is

 $\begin{array}{lll} \operatorname{Min} Z &=& x_1 \,+\, 2\,x_2 \\ \mathrm{subject \ to} \\ 2\,x_1 \,+\, x_2 \geq 4 \\ x_1 \,+\, 2\,x_2 \leq 7 \\ \mathrm{and}\, x_1, x_2 \geq 0; \end{array}$

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -x_1 - 2x_2$ subject to $-2x_1 - x_2 \le -4$ $x_1 + 2x_2 \le 7$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -x_1 - 2x_2 + 0S_1 + 0S_2$ subject to

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	- 1	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
S ₁	0	-4	(- 2)	- 1	1	0

<i>S</i> ₂	0	7	1	2	0	1
Z = 0		Z_j	0	0	0	0
		C_j - Z_j	- 1	-2	0	0
		Ratio = $\frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$	$\frac{1}{2}$ \uparrow	2		

Minimum negative X_B is -4 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is $\frac{1}{2}$ and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -2.

Entering $= x_1$, Departing $= S_1$, Key Element = -2

 $R_1(\text{new}) = R_1(\text{old}) \div -2$

 $R_2(\text{new}) = R_2(\text{old}) - R_1(\text{new})$

Iteration-2		C_j	- 1	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂
<i>x</i> ₁	- 1	2	1	$\frac{1}{2}$	$-\frac{1}{2}$	0
S ₂	0	5	0	$\frac{3}{2}$	$\frac{1}{2}$	1
Z = -2		Z_j	-1	$-\frac{1}{2}$	$\frac{1}{2}$	0
		C_j - Z_j	0	$-\frac{3}{2}$	$-\frac{1}{2}$	0
		Ratio				

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 2, x_2 = 0$

*x*₁ *2*,*x*₂

Max Z = -2

12/23/2017 Solution is provided by AtoZmath.com

Find solution using dual-simplex method MIN Z = x1 + 2x2 + 2x3subject to $x1 + x2 + 2x3 \ge 12$ $x1 + 2x2 + 4x3 \ge 14$ and $x1,x2,x3 \ge 0$

Solution: Problem is

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -x_1 - 2x_2 - 2x_3$ subject to $-x_1 - x_2 - 2x_3 \le -12$ $-x_1 - 2x_2 - 4x_3 \le -14$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -x_1 - 2x_2 - 2x_3 + 0S_1 + 0S_2$ subject to

$$-x_1 - x_2 - 2x_3 + S_1 = -12$$

- $x_1 - 2x_2 - 4x_3 + S_2 = -14$

and $x_1, x_2, x_3, S_1, S_2 \ge 0$

Iteration-1		C_j	- 1	-2	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂
S ₁	0	-12	- 1	- 1	-2	1	0
	İ						

1	2/23/2017		Dual sim	plex method				
	<i>S</i> ₂	0	- 14	- 1	-2	(- 4)	0	1
	Z = 0		Z_j	0	0	0	0	0
			C_j - Z_j	- 1	-2	-2	0	0
			Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	1	1	$\frac{1}{2}$ \uparrow		

Minimum negative X_B is -14 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is $\frac{1}{2}$ and its column index is 3. So, the entering variable is x_3 .

 \therefore The pivot element is -4.

Entering $= x_3$, Departing $= S_2$, Key Element = -4

$$R_2(\text{new}) = R_2(\text{old}) \div -4$$

 $R_1(\text{new}) = R_1(\text{old}) + 2R_2(\text{new})$

Iteration-2		C_j	- 1	-2	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	- 5	$\left(-\frac{1}{2}\right)$	0	0	1	$-\frac{1}{2}$
x ₃	-2	$\frac{7}{2}$	$\frac{1}{4}$	$\frac{1}{2}$	1	0	$-\frac{1}{4}$
Z = -7		Z_j	$-\frac{1}{2}$	-1	-2	0	$\frac{1}{2}$
		C_j - Z_j	$-\frac{1}{2}$	- 1	0	0	$-\frac{1}{2}$
		Ratio = $\frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$	1 ↑				1

Minimum negative X_B is -5 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is 1 and its column index is 1. So, the entering variable is x_1 .

 $\therefore \text{ The pivot element is } -\frac{1}{2}.$

Entering = x_1 , Departing = S_1 , Key Element = $-\frac{1}{2}$

 $R_1(\text{new}) = R_1(\text{old}) \times -2$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{1}{4}R_1(\text{new})$

Iteration-3		C_j	- 1	-2	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂
<i>x</i> ₁	- 1	10	1	0	0	-2	1
x ₃	-2	1	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$-\frac{1}{2}$
Z = -12		Z_j	-1	-1	-2	1	0
		C_j - Z_j	0	- 1	0	- 1	0
		Ratio					

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 10, x_2 = 0, x_3 = 1$

 $\operatorname{Max} Z = -12$

Find solution using dual-simplex method MIN Z = x1 + 2x2subject to $-2x1 - x2 \le -4$ $-x1 - 2x2 \le -7$ and $x_{1,x_{2}} \ge 0$

Solution: **Problem** is

 $Min Z = x_1 + 2x_2$ subject to $-2x_1 - x_2 \le -4$ - $x_1 - 2x_2 \le -7$

and $x_1, x_2 \ge 0$;

In order to apply the dual simplex method, convert Min Z to Max Z **Problem** is

Max $Z = -x_1 - 2x_2$ subject to $-2x_1 - x_2 \le -4$ - $x_1 - 2x_2 \le -7$

and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

 $Max Z = -x_1 - 2x_2 + 0S_1 + 0S_2$ subject to $-2x_1 - x_2 + S_1 = -4$

$$- x_1 - 2x_2 + S_2 = -7$$

and
$$x_1, x_2, S_1, S_2 \ge 0$$

Iteration-1		C_j	- 1	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
S ₁	0	-4	-2	- 1	1	0
	0	-7	(- 1)	-2	0	1
about:blank			•	-		1/2

S ₂					
Z = 0	Z_j	0	0	0	0
	C_j - Z_j	- 1	-2	0	0
	Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	1 ↑	1		

Minimum negative X_B is -7 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is 1 and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -1.

Entering $= x_1$, Departing $= S_2$, Key Element = -1

 $R_2(\text{new}) = R_2(\text{old}) \div -1$

 $R_1(\text{new}) = R_1(\text{old}) + 2R_2(\text{new})$

Iteration-2		C_j	- 1	-2	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
S ₁	0	10	0	3	1	-2
x ₁	- 1	7	1	2	0	- 1
Z = -7		Z_j	-1	-2	0	1
		C_j - Z_j	0	0	0	- 1
		Ratio				

Since all $C_j - Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as : $x_1 = 7, x_2 = 0$

 $\operatorname{Max} Z = -7$

Find solution using dual-simplex method

MIN Z = x1 + x2subject to $x1 + 3x2 \ge 6$ $2x1 + x2 \ge 8$ and $x1,x2 \ge 0$

Solution: Problem is

 $\operatorname{Min} Z = x_1 + x_2$ subject to

 $x_1 + 3x_2 \ge 6$ 2x_1 + x_2 \ge 8 and x_1, x_2 \ge 0;

In order to apply the dual simplex method, convert Min Z to Max Z and all \geq constraint to \leq constraint by multiply -1.

Problem is

Max $Z = -x_1 - x_2$ subject to $-x_1 - 3x_2 \le -6$ $-2x_1 - x_2 \le -8$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = -x_1 - x_2 + 0S_1 + 0S_2$ subject to

$$- x_1 - 3x_2 + S_1 = -6$$

- 2x_1 - x_2 + S_2 = -8

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	- 1	-1	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
S ₁	0	-6	- 1	-3	1	0

S ₂	0	- 8	(-2)	-1	0	1
Z = 0		Z_j	0	0	0	0
		C_j - Z_j	- 1	- 1	0	0
		Ratio = $\frac{C_j - Z_j}{S_2, j}$ and $S_2, j < 0$	$\frac{1}{2}$ \uparrow	1		

Minimum negative X_B is -8 and its row index is 2. So, the leaving basis variable is S_2 .

Minimum positive ratio is $\frac{1}{2}$ and its column index is 1. So, the entering variable is x_1 .

 \therefore The pivot element is -2.

Entering $= x_1$, Departing $= S_2$, Key Element = -2

$$R_2(\text{new}) = R_2(\text{old}) \div -2$$

 $R_1(\text{new}) = R_1(\text{old}) + R_2(\text{new})$

Iteration-2		C_j	- 1	- 1	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂
<i>S</i> ₁	0	-2	0	$\left(-\frac{5}{2}\right)$	1	$-\frac{1}{2}$
<i>x</i> ₁	- 1	4	1	$\frac{1}{2}$	0	$-\frac{1}{2}$
Z = -4		Z_j	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$
		$C_j - Z_j$	0	$-\frac{1}{2}$	0	$-\frac{1}{2}$
		Ratio = $\frac{C_j - Z_j}{S_1, j}$ and $S_1, j < 0$		$\frac{1}{5}$ \uparrow		1

Minimum negative X_B is -2 and its row index is 1. So, the leaving basis variable is S_1 .

Minimum positive ratio is $\frac{1}{5}$ and its column index is 2. So, the entering variable is x_2 .

$$\therefore$$
 The pivot element is $-\frac{5}{2}$.

Entering = x_2 , Departing = S_1 , Key Element = $-\frac{5}{2}$

 $R_1(\text{new}) = R_1(\text{old}) \times -\frac{2}{5}$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{1}{2}R_1(\text{new})$

Iteration-3		Cj	- 1	- 1	0	0
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂
<i>x</i> ₂	- 1	$\frac{4}{5}$	0	1	$-\frac{2}{5}$	$\frac{1}{5}$
<i>x</i> ₁	- 1	$\frac{18}{5}$	1	0	$\frac{1}{5}$	$-\frac{3}{5}$
$Z = -\frac{22}{5}$		Z_j	-1	-1	$\frac{1}{5}$	$\frac{2}{5}$
		$C_j - Z_j$	0	0	$-\frac{1}{5}$	$-\frac{2}{5}$
		Ratio				

Since all C_j - $Z_j \le 0$ and all $X_{Bi} \ge 0$ thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :

 $x_1 = \frac{18}{5}, x_2 = \frac{4}{5}$

 $\operatorname{Max} Z = -\frac{22}{5}$