Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=5 \times 1+\mathbf{x} 2$
subject to
$5 \times 1+2 \times 2<=20$
$\mathrm{x} 1>=3$
$\mathrm{x} 2<=5$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=5 x_{1}+x_{2}$
subject to

$$
\begin{aligned}
5 x_{1}+2 x_{2} & \leq 20 \\
x_{1} & \geq 3 \\
x_{2} & \leq 5
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{1}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack,surplus,artificial variables

$\operatorname{Max} Z=5 x_{1}+x_{2}+0 S_{1}+0 S_{2}+0 S_{3}-M A_{1}$
subject to

$$
\begin{aligned}
5 x_{1}+2 x_{2}+S_{1} & & =20 \\
x_{1} & -S_{2}+A_{1} & =3 \\
x_{2} & +S_{3} & =5
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1} \geq 0$

Iteration-1		C_{j}	5	1	0	0	0	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
S_{1}	0	20	5	2	1	0	0	0	$\frac{20}{5}=4$
$\boldsymbol{A}_{\mathbf{1}}$	$-M$	3	$\mathbf{(1)}$	0	0	-1	0	1	$\frac{3}{1}=3 \rightarrow$

S_{2}	0	5	0	1	0	0	1	0	---
$Z=\mathbf{0}$		Z_{j}	$-M$	$\mathbf{0}$	$\mathbf{0}$	M	$\mathbf{0}$	$-M$	
		$C_{j}-Z_{j}$	$M+5 \uparrow$	1	0	$-M$	0	0	

Positive maximum $C_{j}-Z_{j}$ is $M+5$ and its column index is 1 . So, the entering variable is x_{1}.

Minimum ratio is 3 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 1 .

Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=1$
R_{2} (new) $=R_{2}($ old $)$
R_{1} (new) $=R_{1}($ old $)-5 R_{2}($ new $)$
R_{3} (new) $=R_{3}$ (old)

Iteration-2		C_{j}	5	1	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{S}_{\mathbf{2}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	5	0	2	1	$\mathbf{(5)}$	0	$\frac{5}{5}=1 \rightarrow$
x_{1}	5	3	1	0	0	-1	0	---
$S_{\mathbf{2}}$	0	5	0	1	0	0	1	---
$\boldsymbol{Z}=\mathbf{1 5}$		$Z_{\boldsymbol{j}}$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{- 5}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	0	1	0	$5 \uparrow$	0		

Positive maximum $C_{j}-Z_{j}$ is 5 and its column index is 4 . So, the entering variable is S_{2}.
Minimum ratio is 1 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 5 .
Entering $=S_{2}$, Departing $=S_{1}$, Key Element $=5$
$R_{1}($ new $)=R_{1}($ old $) \div 5$
$R_{2}($ new $)=R_{2}($ old $)+R_{1}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)$

Iteration-3		C_{j}	5	1	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
S_{2}	0	1	0	0.4	0.2	1	0	
x_{1}	5	4	1	0.4	0.2	0	0	
S_{2}	0	5	0	1	0	0	1	
$\boldsymbol{Z}=\mathbf{2 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	0	-1	-1	0	0		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=4, x_{2}=0$
$\operatorname{Max} Z=20$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN Z $=3 \times 1+8 \times 2$
subject to
$\mathbf{x} 1+\mathbf{x} 2=200$
$\mathrm{x} 1<=80$
$\mathrm{x} 2>=60$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=3 x_{1}+8 x_{2}$
subject to

$$
\begin{aligned}
x_{1}+x_{2} & =200 \\
x_{1} & \leq 80 \\
x_{2} & \geq 60
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type $'=$ ' we should add artificial variable A_{1}
2. As the constraint 2 is of type ${ }^{\prime} \leq$ ' we should add slack variable S_{1}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Min} Z=3 x_{1}+8 x_{2}+0 S_{1}+0 S_{2}+M A_{1}+M A_{2}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}+A_{1} & =200 \\
x_{1}+S_{1} & =80 \\
x_{2}-S_{2}+A_{2} & =60
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0$

Iteration-1		C_{j}	3	8	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
A_{1}	M	200	1	1	0	0	1	0	$\frac{200}{1}=200$
S_{1}	0	80	1	0	1	0	0	0	---
about:blank									

A_{2}	M	60	0	$\mathbf{(1)}$	0	-1	0	1	$\frac{60}{1}=60 \rightarrow$
$Z=\mathbf{0}$		Z_{j}	M	$\mathbf{2 M}$	$\mathbf{0}$	$-M$	M	\boldsymbol{M}	
		$C_{j}-Z_{j}$	$-M+3$	$-2 M+8 \uparrow$	0	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-2 M+8$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 60 and its row index is 3 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 1 .
Entering $=x_{2}$, Departing $=A_{2}$, Key Element $=1$
$R_{3}($ new $)=R_{3}($ old $)$
$R_{1}($ new $)=R_{1}($ old $)-R_{3}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)$

Iteration-2		C_{j}	3	8	0	0	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
A_{1}	M	140	1	0	0	1	1	$\frac{140}{1}=140$
$\boldsymbol{S}_{\mathbf{1}}$	0	80	$\mathbf{(1)}$	0	1	0	0	$\frac{80}{1}=80 \rightarrow$
$x_{\mathbf{2}}$	8	60	0	1	0	-1	0	
$\boldsymbol{Z}=\mathbf{4 8 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	\boldsymbol{M}	$\mathbf{8}$	$\mathbf{0}$	$\boldsymbol{M}-\mathbf{8}$	\boldsymbol{M}	

Negative minimum $C_{j}-Z_{j}$ is $-M+3$ and its column index is 1 . So, the entering variable is x_{1}.

Minimum ratio is 80 and its row index is 2 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 1 .

Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=1$
$R_{2}($ new $)=R_{2}($ old $)$
R_{1} (new) $=R_{1}$ (old) $-R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)$

Iteration-3		C_{j}	3	8	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{2}} \end{gathered}$
A_{1}	M	60	0	0	-1	(1)	1	$\frac{60}{1}=60 \rightarrow$
x_{1}	3	80	1	0	1	0	0	---
x_{2}	8	60	0	1	0	-1	0	---
$Z=720$		Z_{j}	3	8	$-M+3$	M-8	M	
		$C_{j}-Z_{j}$	0	0	M-3	$-M+8 \uparrow$	0	

Negative minimum $C_{j}-Z_{j}$ is $-M+8$ and its column index is 4 . So, the entering variable is S_{2}.
Minimum ratio is 60 and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 1 .
Entering $=S_{2}$, Departing $=A_{1}$, Key Element $=1$
R_{1} (new) $=R_{1}$ (old)
R_{2} (new) $=R_{2}$ (old)
$R_{3}($ new $)=R_{3}($ old $)+R_{1}$ (new)

Iteration-4		C_{j}	3	8	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
\boldsymbol{S}_{2}	0	60	0	0	-1	1	
x_{1}	3	80	1	0	1	0	
x_{2}	8	120	0	1	-1	0	
$\boldsymbol{Z}=\mathbf{1 2 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{- 5}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	0	0	5	0		

Since all $C_{j}-Z_{j} \geq 0$

Hence, optimal solution is arrived with value of variables as :
$x_{1}=80, x_{2}=120$
$\operatorname{Min} Z=1200$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} 1+2 \times 2+3 \times 3$
subject to
$2 \times 1+\mathrm{x} 2+\mathrm{x} 3<=2$
$3 \times 1+4 \times 2+2 \times 3>=8$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+3 x_{3}$
subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3} \leq 2 \\
& 3 x_{1}+4 x_{2}+2 x_{3} \geq 8 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0 ;
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{1}

After introducing slack,surplus,artificial variables
$\operatorname{Max} Z=3 x_{1}+2 x_{2}+3 x_{3}+0 S_{1}+0 S_{2}-M A_{1}$
subject to

$$
\begin{array}{lr}
2 x_{1}+x_{2}+x_{3}+S_{1} & =2 \\
3 x_{1}+4 x_{2}+2 x_{3}-S_{2}+A_{1}=8
\end{array}
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, A_{1} \geq 0$

Iteration-1		C_{j}	3	2	3	0	0	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
S_{1}	0	2	2	1	1	1	0	0	$\frac{2}{1}=2$
$\boldsymbol{A}_{\boldsymbol{1}}$	$-M$	8	3	$\mathbf{(4)}$	2	0	-1	1	$\frac{8}{4}=2 \rightarrow$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$-\mathbf{3 M}$	$-4 M$	$-\mathbf{2 M}$	$\mathbf{0}$	\boldsymbol{M}	$-\boldsymbol{M}$	
		$C_{j}-Z_{j}$	$3 M+3$	$4 M+2 \uparrow$	$2 M+3$	0	$-M$	0	

Positive maximum $C_{j}-Z_{j}$ is $4 M+2$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 2 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 4 .
Entering $=x_{2}$, Departing $=A_{1}$, Key Element $=4$
$R_{2}($ new $)=R_{2}($ old $) \div 4$
R_{1} (new) $=R_{1}$ (old) $-R_{2}$ (new)

Iteration-2		C_{j}	3	2	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{3}}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	0	$\frac{5}{4}$	0	$\left(\frac{\mathbf{1}}{\mathbf{2}}\right)$	1	$\frac{1}{4}$	$\frac{0}{\frac{1}{2}}=0 \rightarrow$
x_{2}	2	2	$\frac{3}{4}$	1	$\frac{1}{2}$	0	$-\frac{1}{4}$	$\frac{2}{1}=4$
$\boldsymbol{Z}=\mathbf{4}$		$Z_{\boldsymbol{j}}$	$\frac{\mathbf{3}}{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$-\frac{\mathbf{1}}{\mathbf{2}}$	

Positive maximum $C_{j}-Z_{j}$ is 2 and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is 0 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is $\frac{1}{2}$.
Entering $=x_{3}$, Departing $=S_{1}$, Key Element $=\frac{1}{2}$
$R_{1}($ new $)=R_{1}($ old $) \times 2$
R_{2} (new) $=R_{2}($ old $)-\frac{1}{2} R_{1}$ (new)

Iteration-3		C_{j}	3	2	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio

x_{3}	3	0	$\frac{5}{2}$	0	1	2	$\frac{1}{2}$	
x_{2}	2	2	$-\frac{1}{2}$	1	0	-1	$-\frac{1}{2}$	
$Z=4$		Z_{j}	$\frac{\mathbf{1 3}}{\mathbf{2}}$	$\mathbf{2}$	$\mathbf{3}$	4	$\frac{\mathbf{1}}{\mathbf{2}}$	
		$C_{j}-Z_{j}$	$-\frac{7}{2}$	0	0	-4	$-\frac{1}{2}$	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=2, x_{3}=0$
$\operatorname{Max} Z=4$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=3 \times 1+6 \times 2$
subject to
$\mathrm{x} 1+\mathrm{x} 2<=20$
$4 \times 1+\mathrm{x} 2>=20$
$\mathrm{x} 1+\mathrm{x} 2>=18$
and $x 1, x 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+6 x_{2}$
subject to

$$
\begin{array}{r}
x_{1}+x_{2} \leq 20 \\
4 x_{1}+x_{2} \geq 20 \\
x_{1}+x_{2} \geq 18
\end{array}
$$

and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{1}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Max} Z=3 x_{1}+6 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}-M A_{1}-M A_{2}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}+S_{1} & =20 \\
4 x_{1}+x_{2}-S_{2}+A_{1} & =20 \\
x_{1}+x_{2} & -S_{3}+A_{2}
\end{aligned}=18
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1}, A_{2} \geq 0$

Iteration-1		C_{j}	3	6	0	0	0	$-M$	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
S_{1}	0	20	1	1	1	0	0	0	0	$\frac{20}{1}=20$
A_{1}	$-M$	20	$\mathbf{(4)}$	1	0	-1	0	1	0	$\frac{20}{4}=5 \rightarrow$

A_{2}	$-M$	18	1	1	0	0	-1	0	1	$\frac{18}{1}=18$
$Z=\mathbf{0}$		Z_{j}	$\mathbf{- 5 M}$	$\mathbf{- 2 M}$	$\mathbf{0}$	\boldsymbol{M}	\boldsymbol{M}	$\mathbf{- M}$	$\mathbf{- M}$	
		$C_{j}-Z_{j}$	$5 M+3 \uparrow$	$2 M+6$	0	$-M$	$-M$	0	0	

Positive maximum $C_{j}-Z_{j}$ is $5 M+3$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 5 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 4 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=4$
$R_{2}($ new $)=R_{2}($ old $) \div 4$
$R_{1}($ new $)=R_{1}($ old $)-R_{2}($ new $)$
R_{3} (new) $=R_{3}$ (old) $-R_{2}$ (new)

Iteration-2		C_{j}	3	6	0	0	0	-M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
S_{1}	0	15	0	$\frac{3}{4}$	1	$\frac{1}{4}$	0	0	$\frac{15}{\frac{3}{4}}=20$
x_{1}	3	5	1	$\frac{1}{4}$	0	- $\frac{1}{4}$	0	0	$\frac{5}{\frac{1}{4}}=20$
A_{2}	-M	13	0	$\left(\frac{3}{4}\right)$	0	$\frac{1}{4}$	-1	1	$\frac{13}{\frac{3}{4}}=\frac{52}{3} \rightarrow$
$Z=15$		Z_{j}	3	$-\frac{3 M}{4}+\frac{3}{4}$	0	$-\frac{M}{4}-\frac{3}{4}$	M	-M	
		$C_{j}-Z_{j}$	0	$\frac{3 M}{4}+\frac{21}{4} \uparrow$	0	$\frac{M}{4}+\frac{3}{4}$	-M	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{3 M}{4}+\frac{21}{4}$ and its column index is 2 . So, the entering variable is x_{2}.

Minimum ratio is $\frac{52}{3}$ and its row index is 3 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is $\frac{3}{4}$.
Entering $=x_{2}$, Departing $=A_{2}$, Key Element $=\frac{3}{4}$
$R_{3}($ new $)=R_{3}($ old $) \times \frac{4}{3}$
R_{1} (new) $=R_{1}$ (old) $-\frac{3}{4} R_{3}$ (new)
R_{2} (new) $=R_{2}$ (old)- $\frac{1}{4} R_{3}$ (new)

Iteration-3		C_{j}	3	6	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{S}_{\mathbf{3}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	2	0	0	1	0	$\mathbf{(1)}$	$\frac{2}{1}=2 \rightarrow$
x_{1}	3	$\frac{2}{3}$	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{3}{\frac{1}{3}}=2$
x_{2}	6	$\frac{52}{3}$	0	1	0	$\frac{1}{3}$	$-\frac{4}{3}$	---
$\boldsymbol{Z}=\mathbf{1 0 6}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{1}$	-7	

Positive maximum $C_{j}-Z_{j}$ is 7 and its column index is 5 . So, the entering variable is S_{3}.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 1 .
Entering $=S_{3}$, Departing $=S_{1}$, Key Element $=1$
R_{1} (new) $=R_{1}$ (old)
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{3} R_{1}$ (new)
$R_{3}($ new $)=R_{3}($ old $)+\frac{4}{3} R_{1}($ new $)$

Iteration-4		C_{j}	3	6	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
S_{3}	0	2	0	0	1	0	1	
x_{1}	3	0	1	0	$-\frac{1}{3}$	$-\frac{1}{3}$	0	
x_{2}	6	20	0	1	$\frac{4}{3}$	$\frac{1}{3}$	0	
$\boldsymbol{Z}=\mathbf{1 2 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	0	0	-7	-1	0		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=20$
$\operatorname{Max} Z=120$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} \mathbf{1}+\mathbf{x} \mathbf{2}$
subject to
$4 \times 1+\times 2=4$
$5 \times 1+3 \times 2>=7$
$3 \times 1+2 \times 2<=6$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+x_{2}$
subject to

$$
\begin{aligned}
& 4 x_{1}+x_{2}=4 \\
& 5 x_{1}+3 x_{2} \geq 7 \\
& 3 x_{1}+2 x_{2} \leq 6 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ${ }^{\prime}=$ ' we should add artificial variable A_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{2}
3. As the constraint 3 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Max} Z=3 x_{1}+x_{2}+0 S_{1}+0 S_{2}-M A_{1}-M A_{2}$
subject to

$$
\begin{array}{ll}
4 x_{1}+x_{2} & +A_{1} \\
5 x_{1}+3 x_{2}-S_{1} & =4 \\
3 x_{1}+2 x_{2}+S_{2} & =7 \\
& =6
\end{array}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0$

Iteration-1		C_{j}	3	1	0	0	$-M$	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$
A_{1}	$-M$	4	(4)	1	0	0	1	0	$\frac{4}{4}=1 \rightarrow$
A_{2}	$-M$	7	5	3	-1	0	0	1	$\frac{7}{5}=\frac{7}{5}$

S_{1}	0	6	3	2	0	1	0	0	$\frac{6}{3}=2$
$Z=\mathbf{0}$		Z_{j}	$-9 M$	$-4 M$	M	0	$-M$	$-M$	
		$C_{j}-Z_{j}$	$9 M+3 \uparrow$	$4 M+1$	$-M$	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is $9 M+3$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 1 and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 4 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=4$
$R_{1}($ new $)=R_{1}($ old $) \div 4$
$R_{2}($ new $)=R_{2}($ old $)-5 R_{1}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-3 R_{1}($ new $)$

Iteration-2		C_{j}	3	1	0	0	-M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
x_{1}	3	1	1	$\frac{1}{4}$	0	0	0	$\frac{\frac{1}{\frac{1}{4}}}{\frac{1}{4}}=4$
A_{2}	-M	2	0	$\binom{7}{4}$	-1	0	1	$\frac{2}{\frac{7}{4}}=\frac{8}{7} \rightarrow$
S_{1}	0	3	0	$\frac{5}{4}$	0	1	0	$\frac{3}{5}=\frac{12}{5}$
$Z=3$		Z_{j}	3	$-\frac{7 M}{4}+\frac{3}{4}$	M	0	-M	
		$C_{j}-Z_{j}$	0	$\frac{7 M}{4}+\frac{1}{4} \uparrow$	$-M$	0	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{7 M}{4}+\frac{1}{4}$ and its column index is 2 . So, the entering variable is x_{2}.

Minimum ratio is $\frac{8}{7}$ and its row index is 2 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is $\frac{7}{4}$.
Entering $=x_{2}$, Departing $=A_{2}$, Key Element $=\frac{7}{4}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{4}{7}$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{4} R_{2}$ (new)
R_{3} (new) $=R_{3}$ (old)- $\frac{5}{4} R_{2}$ (new)

Iteration-3		C_{j}	3	1	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{1}} \end{gathered}$
x_{1}	3	$\frac{5}{7}$	1	0	$\frac{1}{7}$	0	$\frac{\frac{5}{7}}{\frac{1}{7}}=5$
x_{2}	1	$\frac{8}{7}$	0	1	$-\frac{4}{7}$	0	---
S_{1}	0	$\frac{11}{7}$	0	0	$\left(\frac{5}{7}\right)$	1	$\frac{\frac{11}{7}}{\frac{5}{7}}=\frac{11}{5} \rightarrow$
$Z=\frac{23}{7}$		Z_{j}	3	1	$-\frac{1}{7}$	0	
		$C_{j}-Z_{j}$	0	0	$\frac{1}{7} \uparrow$	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{1}{7}$ and its column index is 3 . So, the entering variable is S_{1}.
Minimum ratio is $\frac{11}{5}$ and its row index is 3 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is $\frac{5}{7}$.

Entering $=S_{1}$, Departing $=S_{1}$, Key Element $=\frac{5}{7}$
$R_{3}($ new $)=R_{3}($ old $) \times \frac{7}{5}$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{7} R_{3}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)+\frac{4}{7} R_{3}($ new $)$

Iteration-4		C_{j}	3	1	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	3	$\frac{2}{5}$	1	0	0	$-\frac{1}{5}$	
x_{2}	1	$\frac{12}{5}$	0	1	0	$\frac{4}{5}$	
S_{1}	0	$\frac{11}{5}$	0	0	1	$\frac{7}{5}$	
$\boldsymbol{Z}=\frac{\mathbf{1 8}}{\mathbf{5}}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{0}$	$\frac{\mathbf{1}}{\mathbf{5}}$	
		$C_{j}-Z_{j}$	0	0	0	$-\frac{1}{5}$	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{2}{5}, x_{2}=\frac{12}{5}$
$\operatorname{Max} Z=\frac{18}{5}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{5 0 \times 1} \mathbf{+ 3 0 \times 2}$
subject to
$3 \times 1+2 \times 2<=34$
$\mathrm{x} 1+\mathrm{x} 2>=12$
$3 \times 1+2 \times 2>=18$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=50 x_{1}+30 x_{2}$
subject to

$$
\begin{aligned}
3 x_{1}+2 x_{2} & \leq 34 \\
x_{1}+x_{2} & \geq 12 \\
3 x_{1}+2 x_{2} & \geq 18 \\
\text { and } x_{1}, x_{2} & \geq 0 ;
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \geq$ ' we should subtract surplus variable S_{2} and add artificial variable A_{1}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Max} Z=50 x_{1}+30 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}-M A_{1}-M A_{2}$
subject to

$$
\begin{aligned}
3 x_{1}+2 x_{2}+S_{1} & =34 \\
x_{1}+x_{2}-S_{2}+A_{1} & =12 \\
3 x_{1}+2 x_{2} & -S_{3}+A_{2}
\end{aligned}=18
$$

Iteration-1		C_{j}	50	30	0	0	0	$-M$	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
S_{1}	0	34	3	2	1	0	0	0	0	$\frac{34}{3}=\frac{34}{3}$
A_{1}	$-M$	12	1	1	0	-1	0	1	0	$\frac{12}{1}=12$

$\boldsymbol{A}_{\mathbf{2}}$	$-M$	18	$\mathbf{(3)}$	2	0	0	-1	0	1	$\frac{18}{3}=6 \rightarrow$
$\boldsymbol{Z}=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$-\mathbf{4 M}$	$-\mathbf{3 M}$	$\mathbf{0}$	\boldsymbol{M}	\boldsymbol{M}	$\mathbf{- M}$	$-\boldsymbol{M}$	
		$C_{j}-Z_{j}$	$4 M+50 \uparrow$	$3 M+30$	0	$-M$	$-M$	0	0	

Positive maximum $C_{j}-Z_{j}$ is $4 M+50$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 6 and its row index is 3 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 3 .
Entering $=x_{1}$, Departing $=A_{2}$, Key Element $=3$
$R_{3}($ new $)=R_{3}($ old $) \div 3$
R_{1} (new) $=R_{1}$ (old) $-3 R_{3}$ (new)
R_{2} (new) $=R_{2}($ old $)-R_{3}($ new $)$

Iteration-2		C_{j}	50	30	0	0	0	-M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	A_{1}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{3}} \end{gathered}$
S_{1}	0	16	0	0	1	0	(1)	0	$\frac{16}{1}=16 \rightarrow$
A_{1}	-M	6	0	$\frac{1}{3}$	0	-1	$\frac{1}{3}$	1	$\frac{6}{\frac{1}{3}}=18$
x_{1}	50	6	1	$\frac{2}{3}$	0	0	- $\frac{1}{3}$	0	---
$Z=300$		Z_{j}	50	$-\frac{M}{3}+\frac{100}{3}$	0	M	$-\frac{M}{3}-\frac{50}{3}$	-M	
		$C_{j}-Z_{j}$	0	$\frac{M}{3}-\frac{10}{3}$	0	-M	$\frac{M}{3}+\frac{50}{3} \uparrow$	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{M}{3}+\frac{50}{3}$ and its column index is 5. So, the entering variable is S_{3}.
Minimum ratio is 16 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 1 .

Entering $=S_{3}$, Departing $=S_{1}$, Key Element $=1$
$R_{1}($ new $)=R_{1}($ old $)$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{3} R_{1}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)+\frac{1}{3} R_{1}($ new $)$

Iteration-3		C_{j}	50	30	0	0	0	-M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	\boldsymbol{A}_{1}	MinRatio $\frac{X_{B}}{x_{2}}$
S_{3}	0	16	0	0	1	0	1	0	---
A_{1}	-M	$\frac{2}{3}$	0	$\left(\frac{1}{3}\right)$	- $\frac{1}{3}$	-1	0	1	$\frac{\frac{2}{3}}{\frac{1}{3}}=2 \rightarrow$
x_{1}	50	$\frac{34}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	0	$\frac{\frac{34}{3}}{\frac{2}{3}}=17$
$Z=\frac{1700}{3}$		Z_{j}	50	$-\frac{M}{3}+\frac{100}{3}$	$\frac{M}{3}+\frac{50}{3}$	M	0	-M	
		$C_{j}-Z_{j}$	0	$\frac{M}{3}-\frac{10}{3} \uparrow$	$-\frac{M}{3}-\frac{50}{3}$	-M	0	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{M}{3}-\frac{10}{3}$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 2 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is $\frac{1}{3}$.

Entering $=x_{2}$, Departing $=A_{1}$, Key Element $=\frac{1}{3}$
$R_{2}($ new $)=R_{2}($ old $) \times 3$
$R_{1}($ new $)=R_{1}($ old $)$
$R_{3}($ new $)=R_{3}($ old $)-\frac{2}{3} R_{2}$ (new)

Iteration-4		C_{j}	50	30	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
S_{3}	0	16	0	0	1	0	1	
x_{2}	30	2	0	1	-1	-3	0	
x_{1}	50	10	1	0	1	2	0	
$\boldsymbol{Z}=\mathbf{5 6 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{5 0}$	$\mathbf{3 0}$	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{0}$	
	$C_{j}-Z_{\boldsymbol{j}}$	0	0	-20	-10	0		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=10, x_{2}=2$
$\operatorname{Max} Z=560$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN $Z=2 \times 1+10 \times 2$
subject to
$\times 1+2 \times 2<=40$
$3 \times 1+\times 2>=30$
$4 \times 1+3 \times 2>=64$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=2 x_{1}+10 x_{2}$
subject to

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 40 \\
3 x_{1}+x_{2} & \geq 30 \\
4 x_{1}+3 x_{2} & \geq 64 \\
\text { and } x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \geq$ ' we should subtract surplus variable S_{2} and add artificial variable A_{1}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{2}

After introducing slack,surplus, artificial variables

$\operatorname{Min} Z=2 x_{1}+10 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}+M A_{1}+M A_{2}$
subject to

$$
\begin{aligned}
x_{1}+2 x_{2}+S_{1} & =40 \\
3 x_{1}+x_{2}-S_{2}+A_{1} & =30 \\
4 x_{1}+3 x_{2} & -S_{3}+A_{2}
\end{aligned}=64
$$

Iteration-1		C_{j}	2	10	0	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$
S_{1}	0	40	1	2	1	0	0	0	0	$\frac{40}{1}=40$
$A_{\mathbf{1}}$	M	30	$\mathbf{(3)}$	1	0	-1	0	1	0	$\frac{30}{3}=10 \rightarrow$

A_{2}	M	64	4	3	0	0	-1	0	1	$\frac{64}{4}=16$
$Z=\mathbf{0}$		Z_{j}	$7 M$	$4 M$	$\mathbf{0}$	$-M$	$-M$	M	M	
		$C_{j}-Z_{j}$	$-7 M+2 \uparrow$	$-4 M+10$	0	M	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-7 M+2$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 10 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 3 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=3$
$R_{2}($ new $)=R_{2}($ old $) \div 3$
R_{1} (new) $=R_{1}$ (old) $-R_{2}$ (new)
R_{3} (new) $=R_{3}($ old $)-4 R_{2}$ (new)

Iteration-2		C_{j}	2	10	0	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	\boldsymbol{A}_{2}	MinRatio $\frac{X_{B}}{x_{2}}$
S_{1}	0	30	0	$\frac{5}{3}$	1	$\frac{1}{3}$	0	0	$\frac{30}{\frac{5}{3}}=18$
x_{1}	2	10	1	$\frac{1}{3}$	0	- $\frac{1}{3}$	0	0	$\frac{10}{\frac{1}{3}}=30$
A_{2}	M	24	0	$\left(\frac{5}{3}\right)$	0	$\frac{4}{3}$	-1	1	$\frac{24}{\frac{5}{3}}=\frac{72}{5} \rightarrow$
$Z=20$		Z_{j}	2	$\frac{5 M}{3}+\frac{2}{3}$	0	$\frac{4 M}{3}-\frac{2}{3}$	-M	M	
		$C_{j}-Z_{j}$	0	$-\frac{5 M}{3}+\frac{28}{3} \uparrow$	0	$-\frac{4 M}{3}+\frac{2}{3}$	M	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{5 M}{3}+\frac{28}{3}$ and its column index is 2 . So, the entering variable is x_{2}.

Minimum ratio is $\frac{72}{5}$ and its row index is 3 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is $\frac{5}{3}$.
Entering $=x_{2}$, Departing $=A_{2}$, Key Element $=\frac{5}{3}$
$R_{3}($ new $)=R_{3}($ old $) \times \frac{3}{5}$
R_{1} (new) $=R_{1}($ old $)-\frac{5}{3} R_{3}$ (new)
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{3} R_{3}$ (new)

Iteration-3		C_{j}	2	10	0	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{2}} \end{gathered}$
S_{1}	0	6	0	0	1	-1	1	---
x_{1}	2	$\frac{26}{5}$	1	0	0	$-\frac{3}{5}$	$\frac{1}{5}$	---
x_{2}	10	$\frac{72}{5}$	0	1	0	$\left(\frac{4}{5}\right)$	$-\frac{3}{5}$	$\frac{\frac{72}{5}}{\frac{4}{5}}=18 \rightarrow$
$Z=\frac{772}{5}$		Z_{j}	2	10	0	$\frac{34}{5}$	$-\frac{28}{5}$	
		$C_{j}-Z_{j}$	0	0	0	$-\frac{34}{5} \uparrow$	$\frac{28}{5}$	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{34}{5}$ and its column index is 4 . So, the entering variable is S_{2}.
Minimum ratio is 18 and its row index is 3 . So, the leaving basis variable is x_{2}.
\therefore The pivot element is $\frac{4}{5}$.
Entering $=S_{2}$, Departing $=x_{2}$, Key Element $=\frac{4}{5}$
$R_{3}($ new $)=R_{3}($ old $) \times \frac{5}{4}$
R_{1} (new) $=R_{1}($ old $)+R_{3}$ (new)
$R_{2}($ new $)=R_{2}($ old $)+\frac{3}{5} R_{3}($ new $)$

Iteration-4		C_{j}	2	10	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
S_{1}	0	24	0	$\frac{5}{4}$	1	0	$\frac{1}{4}$	
x_{1}	2	16	1	$\frac{3}{4}$	0	0	$-\frac{1}{4}$	
S_{2}	0	18	0	$\frac{5}{4}$	0	1	$-\frac{3}{4}$	
$\boldsymbol{Z}=\mathbf{3 2}$		$Z_{\boldsymbol{j}}$	$\mathbf{2}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\mathbf{0}$	$\mathbf{0}$	$-\frac{\mathbf{1}}{\mathbf{2}}$	
	$C_{j}-Z_{j}$	0	$\frac{17}{2}$	0	0	$\frac{1}{2}$		

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=16, x_{2}=0$
$\operatorname{Min} Z=32$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN Z $=3 \times 1+2 \times 2$
subject to
$5 \times 1+\mathrm{x} 2>=10$
$2 \times 1+2 \times 2>=12$
$\mathrm{x} 1+4 \times 2>=12$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=3 x_{1}+2 x_{2}$
subject to

$$
\begin{array}{r}
5 x_{1}+x_{2} \geq 10 \\
2 x_{1}+2 x_{2} \geq 12 \\
x_{1}+4 x_{2} \geq 12
\end{array}
$$

and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{2}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{3}

After introducing surplus,artificial variables

$\operatorname{Min} Z=3 x_{1}+2 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}+M A_{1}+M A_{2}+M A_{3}$
subject to

$$
\begin{array}{rlrl}
5 x_{1}+x_{2}-S_{1} & =A_{1} & =10 \\
2 x_{1}+2 x_{2} & -S_{2} & \\
x_{1}+4 x_{2} & =A_{2} & =12 \\
+A_{3} & =12
\end{array}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1}, A_{2}, A_{3} \geq 0$

Iteration-1	C_{j}	3	2	0	0	0	M	M	M		
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
$\boldsymbol{A}_{\mathbf{1}}$	M	10	$\mathbf{(5)}$	1	-1	0	0	1	0	0	$\frac{10}{5}=2 \rightarrow$
A_{2}	M	12	2	2	0	-1	0	0	1	0	$\frac{12}{2}=6$

A_{3}	M	12	1	4	0	0	-1	0	0	1	$\frac{12}{1}=12$
$Z=\mathbf{0}$		Z_{j}	$\mathbf{8 M}$	$\mathbf{7 M}$	$-\mathbf{M}$	$-\boldsymbol{M}$	$\mathbf{- M}$	\boldsymbol{M}	\boldsymbol{M}	\boldsymbol{M}	
		$C_{j}-Z_{j}$	$-8 M+3$	\uparrow	$-7 M+2$	M	M	M	0	0	0

Negative minimum $C_{j}-Z_{j}$ is $-8 M+3$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 5 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=5$
$R_{1}($ new $)=R_{1}($ old $) \div 5$
R_{2} (new) $=R_{2}$ (old) $-2 R_{1}$ (new)
R_{3} (new) $=R_{3}$ (old) $-R_{1}$ (new)

Iteration-2		C_{j}	3	2	0	0	0	M	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	\boldsymbol{A}_{2}	\boldsymbol{A}_{3}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
x_{1}	3	2	1	$\frac{1}{5}$	- $\frac{1}{5}$	0	0	0	0	$\frac{2}{\frac{1}{5}}=10$
A_{2}	M	8	0	$\frac{8}{5}$	$\frac{2}{5}$	-1	0	1	0	$\frac{8}{8}=5$
A_{3}	M	10	0	$\left(\frac{19}{5}\right)$	$\frac{1}{5}$	0	-1	0	1	$\frac{10}{\frac{19}{5}}=\frac{50}{19} \rightarrow$
$Z=6$		Z_{j}	3	$\frac{27 M}{5}+\frac{3}{5}$	$\frac{3 M}{5}-\frac{3}{5}$	-M	-M	M	M	
		$C_{j}-Z_{j}$	0	$-\frac{27 M}{5}+\frac{7}{5} \uparrow$	$-\frac{3 M}{5}+\frac{3}{5}$	M	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{27 M}{5}+\frac{7}{5}$ and its column index is 2. So, the entering variable is x_{2}.

Minimum ratio is $\frac{50}{19}$ and its row index is 3 . So, the leaving basis variable is A_{3}.
\therefore The pivot element is $\frac{19}{5}$.
Entering $=x_{2}$, Departing $=A_{3}$, Key Element $=\frac{19}{5}$
$R_{3}($ new $)=R_{3}($ old $) \times \frac{5}{19}$
R_{1} (new) $=R_{1}$ (old) $-\frac{1}{5} R_{3}$ (new)
R_{2} (new) $=R_{2}$ (old) $-\frac{8}{5} R_{3}$ (new)

Iteration-3		C_{j}	3	2	0	0	0	M	
B	C_{B}	X_{B}	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{3}} \end{gathered}$
x_{1}	3	$\frac{28}{19}$	1	0	$-\frac{4}{19}$	0	$\frac{1}{19}$	0	$\frac{\frac{28}{19}}{\frac{1}{19}}=28$
A_{2}	M	$\frac{72}{19}$	0	0	$\frac{6}{19}$	-1	$\left(\frac{8}{19}\right)$	1	$\frac{\frac{72}{19}}{\frac{8}{19}}=9 \rightarrow$
x_{2}	2	$\frac{50}{19}$	0	1	$\frac{1}{19}$	0	$-\frac{5}{19}$	0	---
$Z=\frac{184}{19}$		Z_{j}	3	2	$\frac{6 M}{19}-\frac{10}{19}$	-M	$\frac{8 M}{19}-\frac{7}{19}$	M	
		$C_{j}-Z_{j}$	0	0	$-\frac{6 M}{19}+\frac{10}{19}$	M	$-\frac{8 M}{19}+\frac{7}{19} \uparrow$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{8 M}{19}+\frac{7}{19}$ and its column index is 5 . So, the entering variable is S_{3}.
Minimum ratio is 9 and its row index is 2 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is $\frac{8}{19}$.

Entering $=S_{3}$, Departing $=A_{2}$, Key Element $=\frac{8}{19}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{19}{8}$
R_{1} (new) $=R_{1}($ old $)-\frac{1}{19} R_{2}$ (new)
$R_{3}($ new $)=R_{3}($ old $)+\frac{5}{19} R_{2}$ (new)

Iteration-4		C_{j}	3	2	0	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	MinRatio
x_{1}	3	1	1	0	$-\frac{1}{4}$	$\frac{1}{8}$	0	
S_{3}	0	9	0	0	$\frac{3}{4}$	$-\frac{19}{8}$	1	
x_{2}	2	5	0	1	$\frac{1}{4}$	$-\frac{5}{8}$	0	
$Z=13$		Z_{j}	3	2	$-\frac{1}{4}$	$-\frac{7}{8}$	0	
		$C_{j}-Z_{j}$	0	0	$\frac{1}{4}$	$\frac{7}{8}$	0	

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=1, x_{2}=5$
$\operatorname{Min} Z=13$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN Z $=5 \times 1+3 \times 2$
subject to
$2 \times 1+4 \times 2<=12$
$2 \times 1+2 \times 2=10$
$5 \times 1+2 \times 2>=10$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=5 x_{1}+3 x_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \leq 12 \\
& 2 x_{1}+2 x_{2}=10 \\
& 5 x_{1}+2 x_{2} \geq 10 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $'=$ ' we should add artificial variable A_{1}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Min} Z=5 x_{1}+3 x_{2}+0 S_{1}+0 S_{2}+M A_{1}+M A_{2}$
subject to

$$
\begin{array}{ll}
2 x_{1}+4 x_{2}+S_{1} & =12 \\
2 x_{1}+2 x_{2}+A_{1} & =10 \\
5 x_{1}+2 x_{2}-S_{2}+A_{2} & =10 \\
\text { and } x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0 &
\end{array}
$$

Iteration-1		C_{j}	5	3	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$ S_{1} 0^{2}
12	2	4	1	0	0	0	$\frac{12}{2}=6$		
A_{1}	M	10	2	2	0	0	1	0	$\frac{10}{2}=5$

A_{2}	M	10	$\mathbf{(5)}$	2	0	-1	0	1	$\frac{10}{5}=2 \rightarrow$
$Z=\mathbf{0}$		Z_{j}	$7 M$	$4 M$	$\mathbf{0}$	$-M$	M	M	
		$C_{j}-Z_{j}$	$-7 M+5 \uparrow$	$-4 M+3$	0	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-7 M+5$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 2 and its row index is 3 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 5 .
Entering $=x_{1}$, Departing $=A_{2}$, Key Element $=5$
$R_{3}($ new $)=R_{3}($ old $) \div 5$
R_{1} (new) $=R_{1}($ old $)-2 R_{3}$ (new)
R_{2} (new) $=R_{2}$ (old) $-2 R_{3}$ (new)

Iteration-2		C_{j}	5	3	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
S_{1}	0	8	0	$\left(\frac{16}{5}\right)$	1	$\frac{2}{5}$	0	$\frac{8}{\frac{16}{5}}=\frac{5}{2} \rightarrow$
A_{1}	M	6	0	$\frac{6}{5}$	0	$\frac{2}{5}$	1	$\frac{6}{\frac{6}{5}}=5$
x_{1}	5	2	1	$\frac{2}{5}$	0	- $\frac{1}{5}$	0	$\frac{2}{\frac{2}{5}}=5$
$Z=10$		Z_{j}	5	$\frac{6 M}{5}+2$	0	$\frac{2 M}{5}-1$	M	
		$C_{j}-Z_{j}$	0	$-\frac{6 M}{5}+1 \uparrow$	0	$-\frac{2 M}{5}+1$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{6 M}{5}+1$ and its column index is 2 . So, the entering variable is x_{2}.

Minimum ratio is $\frac{5}{2}$ and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is $\frac{16}{5}$.
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=\frac{16}{5}$
$R_{1}($ new $)=R_{1}($ old $) \times \frac{5}{16}$
$R_{2}($ new $)=R_{2}($ old $)-\frac{6}{5} R_{1}$ (new)
R_{3} (new) $=R_{3}$ (old)- $\frac{2}{5} R_{1}$ (new)

Iteration-3		C_{j}	5	3	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{2}} \end{gathered}$
x_{2}	3	$\frac{5}{2}$	0	1	$\frac{5}{16}$	$\frac{1}{8}$	0	$\frac{\frac{5}{2}}{\frac{1}{8}}=20$
A_{1}	M	3	0	0	$-\frac{3}{8}$	$\left(\frac{1}{4}\right)$	1	$\frac{3}{\frac{1}{4}}=12 \rightarrow$
x_{1}	5	1	1	0	$-\frac{1}{8}$	$-\frac{1}{4}$	0	---
$Z=\frac{25}{2}$		Z_{j}	5	3	$-\frac{3 M}{8}+\frac{5}{16}$	$\frac{M}{4}-\frac{7}{8}$	M	
		$C_{j}-Z_{j}$	0	0	$\frac{3 M}{8}-\frac{5}{16}$	$-\frac{M}{4}+\frac{7}{8} \uparrow$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{M}{4}+\frac{7}{8}$ and its column index is 4 . So, the entering variable is S_{2}.
Minimum ratio is 12 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is $\frac{1}{4}$.

Entering $=S_{2}$, Departing $=A_{1}$, Key Element $=\frac{1}{4}$
$R_{2}($ new $)=R_{2}($ old $) \times 4$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{8} R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)+\frac{1}{4} R_{2}($ new $)$

Iteration-4		C_{j}	5	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{2}	3	1	0	1	$\frac{1}{2}$	0	
S_{2}	0	12	0	0	$-\frac{3}{2}$	1	
x_{1}	5	4	1	0	$-\frac{1}{2}$	0	
$\boldsymbol{Z}=\mathbf{2 3}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{- 1}$	$\mathbf{0}$	

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=4, x_{2}=1$
$\operatorname{Min} Z=23$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN Z $=8 \times 1+6 \times 2$
subject to
$3 \times 1+8 \times 2<=96$
$2 \times 1+\mathrm{x} 2>=10$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=8 x_{1}+6 x_{2}$
subject to
$3 x_{1}+8 x_{2} \leq 96$
$2 x_{1}+x_{2} \geq 10$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \geq$ ' we should subtract surplus variable S_{2} and add artificial variable A_{1}

After introducing slack,surplus,artificial variables

$\operatorname{Min} Z=8 x_{1}+6 x_{2}+0 S_{1}+0 S_{2}+M A_{1}$
subject to

$$
\begin{aligned}
3 x_{1}+8 x_{2}+S_{1} & =96 \\
2 x_{1}+x_{2}-S_{2}+A_{1} & =10
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, A_{1} \geq 0$

Iteration-1		C_{j}	8	6	0	0	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$ S_{1}
$\boldsymbol{A}_{\mathbf{1}}$	M	96	3	8	1	0	0	$\frac{96}{3}=32$
$\boldsymbol{Z}=\mathbf{0}$	10	$\mathbf{(2)}$	1	0	-1	1	$\frac{10}{2}=5 \rightarrow$	

Negative minimum $C_{j}-Z_{j}$ is $-2 M+8$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 5 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 2 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=2$
$R_{2}($ new $)=R_{2}($ old $) \div 2$
R_{1} (new) $=R_{1}$ (old) $-3 R_{2}$ (new)

Iteration-2		C_{j}	8	6	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
S_{1}	0	81	0	$\frac{13}{2}$	1	$\frac{3}{2}$	
x_{1}	8	5	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	
$\boldsymbol{Z}=\mathbf{4 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{0}$	-4	
	$C_{j}-Z_{\boldsymbol{j}}$	0	2	0	4		

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=5, x_{2}=0$
$\operatorname{Min} Z=40$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN $Z=20 \times 1+10 \times 2$
subject to
$\mathrm{x} 1+2 \times 2<=40$
$3 \times 1+\mathrm{x} 2>=30$
$4 \times 1+3 \times 2>=60$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=20 x_{1}+10 x_{2}$
subject to

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 40 \\
& 3 x_{1}+x_{2} \geq 30 \\
& 4 x_{1}+3 x_{2} \geq 60 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{1}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Min} Z=20 x_{1}+10 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}+M A_{1}+M A_{2}$
subject to

$$
\begin{aligned}
x_{1}+2 x_{2}+S_{1} & =40 \\
3 x_{1}+x_{2}-S_{2}+A_{1} & =30 \\
4 x_{1}+3 x_{2} & -S_{3}+A_{2}
\end{aligned}=60
$$

Iteration-1		C_{j}	20	10	0	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
S_{1}	0	40	1	2	1	0	0	0	0	$\frac{40}{1}=40$
$\boldsymbol{A}_{\mathbf{1}}$	M	30	$(\mathbf{3})$	1	0	-1	0	1	0	$\frac{30}{3}=10 \rightarrow$

A_{2}	M	60	4	3	0	0	-1	0	1	$\frac{60}{4}=15$
$Z=\mathbf{0}$		Z_{j}	$7 M$	$4 M$	$\mathbf{0}$	$-M$	$-M$	M	M	
		$C_{j}-Z_{j}$	$-7 M+20 \uparrow$	$-4 M+10$	0	M	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-7 M+20$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 10 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 3 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=3$
$R_{2}($ new $)=R_{2}($ old $) \div 3$
R_{1} (new) $=R_{1}$ (old) $-R_{2}$ (new)
R_{3} (new) $=R_{3}$ (old) $-4 R_{2}$ (new)

Iteration-2		C_{j}	20	10	0	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
S_{1}	0	30	0	$\frac{5}{3}$	1	$\frac{1}{3}$	0	0	$\frac{30}{\frac{5}{3}}=18$
x_{1}	20	10	1	$\frac{1}{3}$	0	- $\frac{1}{3}$	0	0	$\frac{10}{\frac{1}{3}}=30$
A_{2}	M	20	0	$\left(\frac{5}{3}\right)$	0	$\frac{4}{3}$	-1	1	$\frac{20}{\frac{5}{3}}=12 \rightarrow$
$Z=200$		Z_{j}	20	$\frac{5 M}{3}+\frac{20}{3}$	0	$\frac{4 M}{3}-\frac{20}{3}$	-M	M	
		$C_{j}-Z_{j}$	0	$-\frac{5 M}{3}+\frac{10}{3} \uparrow$	0	$-\frac{4 M}{3}+\frac{20}{3}$	M	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{5 M}{3}+\frac{10}{3}$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 12 and its row index is 3 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is $\frac{5}{3}$.

Entering $=x_{2}$, Departing $=A_{2}$, Key Element $=\frac{5}{3}$
$R_{3}($ new $)=R_{3}($ old $) \times \frac{3}{5}$
$R_{1}($ new $)=R_{1}($ old $)-\frac{5}{3} R_{3}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{3} R_{3}($ new $)$

Iteration-3		C_{j}	20	10	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
S_{1}	0	10	0	0	1	-1	1	
x_{1}	20	6	1	0	0	$-\frac{3}{5}$	$\frac{1}{5}$	
x_{2}	10	12	0	1	0	$\frac{4}{5}$	$-\frac{3}{5}$	
$\boldsymbol{Z}=\mathbf{2 4 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{0}$	$\mathbf{- 4}$	$\mathbf{- 2}$	
	$C_{j}-Z_{j}$	0	0	0	4	2		

Since all $C_{j}-Z_{j} \geq 0$

Hence, optimal solution is arrived with value of variables as :
$x_{1}=6, x_{2}=12$
$\operatorname{Min} Z=240$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN $Z=200 \times 1+400 \times 2$
subject to
$\mathrm{x} 1+\mathrm{x} 2>=200$
$\mathrm{x} 1+3 \times 2>=100$
$\mathrm{x} 1+3 \times 2<=35$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=200 x_{1}+400 x_{2}$
subject to
$x_{1}+x_{2} \geq 200$
$x_{1}+3 x_{2} \geq 100$
$x_{1}+3 x_{2} \leq 35$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack,surplus, artificial variables

$\operatorname{Min} Z=200 x_{1}+400 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}+M A_{1}+M A_{2}$
subject to

$$
\begin{aligned}
& x_{1}+x_{2}-S_{1}+A_{1}=200 \\
& x_{1}+3 x_{2}-S_{2} \\
& x_{1}+3 x_{2}+A_{2}
\end{aligned}=100
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1}, A_{2} \geq 0$

Iteration-1	C_{j}	200	400	0	0	0	M	M		
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{2}}$
A_{1}	M	200	1	1	-1	0	0	1	0	$\frac{200}{1}=200$
A_{2}	M	100	1	3	0	-1	0	0	1	$\frac{100}{3}=\frac{100}{3}$

S_{1}	0	35	1	(3)	0	0	1	0	0	$\frac{35}{3}=\frac{35}{3} \rightarrow$
$Z=\mathbf{0}$		Z_{j}	$\mathbf{2 M}$	$\mathbf{4 M}$	$-M$	$-M$	$\mathbf{0}$	\boldsymbol{M}	\boldsymbol{M}	
		$C_{j}-Z_{j}$	$-2 M+200$	$-4 M+400 \uparrow$	M	M	0	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-4 M+400$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is $\frac{35}{3}$ and its row index is 3 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 3 .
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=3$
$R_{3}($ new $)=R_{3}($ old $) \div 3$
R_{1} (new) $=R_{1}$ (old) $-R_{3}$ (new)
R_{2} (new) $=R_{2}($ old $)-3 R_{3}$ (new)

Iteration-2		C_{j}	200	400	0	0	0	M	M	
B	C_{B}	X_{B}	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	A_{1}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{1}} \end{gathered}$
A_{1}	M	$\frac{565}{3}$	$\frac{2}{3}$	0	-1	0	- $\frac{1}{3}$	1	0	$\frac{\frac{565}{3}}{\frac{2}{3}}=\frac{565}{2}$
A_{2}	M	65	0	0	0	-1	-1	0	1	---
x_{2}	400	$\frac{35}{3}$	$\left(\frac{1}{3}\right)$	1	0	0	$\frac{1}{3}$	0	0	$\frac{\frac{35}{3}}{\frac{1}{3}}=35 \rightarrow$
$Z=\frac{14000}{3}$		Z_{j}	$\frac{2 M}{3}+\frac{400}{3}$	400	-M	-M	$-\frac{4 M}{3}+\frac{400}{3}$	M	M	
		$C_{j}-Z_{j}$	$-\frac{2 M}{3}+\frac{200}{3} \uparrow$	0	M	M	$\frac{4 M}{3}-\frac{400}{3}$	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{2 M}{3}+\frac{200}{3}$ and its column index is 1 . So, the entering variable is x_{1}.

Minimum ratio is 35 and its row index is 3 . So, the leaving basis variable is x_{2}.
\therefore The pivot element is $\frac{1}{3}$.
Entering $=x_{1}$, Departing $=x_{2}$, Key Element $=\frac{1}{3}$
$R_{3}($ new $)=R_{3}($ old $) \times 3$
$R_{1}($ new $)=R_{1}($ old $)-\frac{2}{3} R_{3}$ (new)
R_{2} (new) $=R_{2}($ old $)$

Iteration-3		C_{j}	200	400	0	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	MinRatio
A_{1}	M	165	0	-2	-1	0	-1	1	0	
A_{2}	M	65	0	0	0	-1	-1	0	1	
x_{1}	200	35	1	3	0	0	1	0	0	
$\boldsymbol{Z = 7 0 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{2 0 0}$	$\mathbf{- 2 M + \mathbf { 6 0 0 }}$	$\mathbf{- M}$	$-\boldsymbol{M}$	$\mathbf{- 2 M + 2 0 0}$	\boldsymbol{M}	\boldsymbol{M}	
		$C_{j}-Z_{j}$	0	$2 M-200$	M	M	$2 M-200$	0	0	

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=35, x_{2}=0$
$\operatorname{Min} Z=7000$
But this solution is not feasible
because the final solution violates the $1^{s t}$ constraint $x_{1}+x_{2} \geq 200$.
and the artificial variable A_{1} appears in the basis with positive value 165

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN Z $=600 \times 1+400 \times 2$
subject to
$15 \times 1+15 \times 2>=200$
$3 \times 1+\times 2>=40$
$2 \times 1+5 \times 2>=44$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=600 x_{1}+400 x_{2}$
subject to
$15 x_{1}+15 x_{2} \geq 200$
$3 x_{1}+x_{2} \geq 40$
$2 x_{1}+5 x_{2} \geq 44$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{2}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{3}

After introducing surplus, artificial variables

$\operatorname{Min} Z=600 x_{1}+400 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}+M A_{1}+M A_{2}+M A_{3}$
subject to

$$
\begin{array}{rlrl}
15 x_{1}+15 x_{2}-S_{1} & +A_{1} & =200 \\
3 x_{1}+x_{2}-S_{2} & \\
2 x_{1}+5 x_{2} & -S_{3} & =40 \\
+A_{3} & =44
\end{array}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1}, A_{2}, A_{3} \geq 0$

Iteration-1		C_{j}	600	400	0	0	0	M	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
A_{1}	M	200	15	15	-1	0	0	1	0	0	$\frac{200}{15}=\frac{40}{3}$
A_{2}	M	40	3	1	0	-1	0	0	1	0	$\frac{40}{1}=40$

A_{3}	M	44	2	(5)	0	0	-1	0	0	1	$\frac{44}{5}=\frac{44}{5} \rightarrow$
$Z=\mathbf{0}$		Z_{j}	$\mathbf{2 0 M}$	$\mathbf{2 1 M}$	$-M$	$-M$	$-M$	M	M	M	
		$C_{j}-Z_{j}$	$-20 M+600$	$-21 M+400 \uparrow$	M	M	M	0	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-21 M+400$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is $\frac{44}{5}$ and its row index is 3 . So, the leaving basis variable is A_{3}.
\therefore The pivot element is 5 .
Entering $=x_{2}$, Departing $=A_{3}$, Key Element $=5$
$R_{3}($ new $)=R_{3}($ old $) \div 5$
R_{1} (new) $=R_{1}$ (old)- $15 R_{3}$ (new)
R_{2} (new) $=R_{2}($ old $)-R_{3}$ (new)

Iteration-2		C_{j}	600	400	0	0	0	M	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	\boldsymbol{A}_{1}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{1}} \end{gathered}$
A_{1}	M	68	(9)	0	-1	0	3	1	0	$\frac{68}{9}=\frac{68}{9} \rightarrow$
A_{2}	M	$\frac{156}{5}$	$\frac{13}{5}$	0	0	-1	$\frac{1}{5}$	0	1	$\frac{\frac{156}{5}}{\frac{13}{5}}=12$
x_{2}	400	$\frac{44}{5}$	$\frac{2}{5}$	1	0	0	$-\frac{1}{5}$	0	0	$\frac{\frac{44}{5}}{\frac{2}{5}}=22$
$Z=3520$		Z_{j}	$\frac{58 M}{5}+160$	400	-M	-M	$\frac{16 M}{5}-80$	M	M	
		$C_{j}-Z_{j}$	$-\frac{58 M}{5}+440 \uparrow$	0	M	M	$-\frac{16 M}{5}+80$	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{58 M}{5}+440$ and its column index is 1 . So, the entering variable is x_{1}.

Minimum ratio is $\frac{68}{9}$ and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 9 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=9$
$R_{1}($ new $)=R_{1}($ old $) \div 9$
$R_{2}($ new $)=R_{2}($ old $)-\frac{13}{5} R_{1}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-\frac{2}{5} R_{1}($ new $)$

Iteration-3		C_{j}	600	400	0	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{1}} \end{gathered}$
x_{1}	600	$\frac{68}{9}$	1	0	- $\frac{1}{9}$	0	$\frac{1}{3}$	0	---
A_{2}	M	$\frac{104}{9}$	0	0	$\left(\frac{13}{45}\right)$	-1	$-\frac{2}{3}$	1	$\frac{\frac{104}{9}}{\frac{13}{45}}=40 \rightarrow$
x_{2}	400	$\frac{52}{9}$	0	1	$\frac{2}{45}$	0	- $\frac{1}{3}$	0	$\frac{\frac{52}{9}}{\frac{2}{45}}=130$
$Z=\frac{61600}{9}$		Z_{j}	600	400	$\frac{13 M}{45}-\frac{440}{9}$	-M	$-\frac{2 M}{3}+\frac{200}{3}$	M	
		$C_{j}-Z_{j}$	0	0	$-\frac{13 M}{45}+\frac{440}{9} \uparrow$	M	$\frac{2 M}{3}-\frac{200}{3}$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{13 M}{45}+\frac{440}{9}$ and its column index is 3 . So, the entering variable is S_{1}.

Minimum ratio is 40 and its row index is 2 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is $\frac{13}{45}$.

Entering $=S_{1}$, Departing $=A_{2}$, Key Element $=\frac{13}{45}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{45}{13}$
$R_{1}($ new $)=R_{1}($ old $)+\frac{1}{9} R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-\frac{2}{45} R_{2}($ new $)$

Iteration-4		C_{j}	600	400	0	0	0	
\boldsymbol{B}	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	MinRatio
x_{1}	600	12	1	0	0	$-\frac{5}{13}$	$\frac{1}{13}$	
S_{1}	0	40	0	0	1	$-\frac{45}{13}$	$-\frac{30}{13}$	
x_{2}	400	4	0	1	0	$\frac{2}{13}$	$-\frac{3}{13}$	
$Z=8800$		Z_{j}	600	400	0	$-\frac{2200}{13}$	$-\frac{600}{13}$	
		$C_{j}-Z_{j}$	0	0	0	$\frac{2200}{13}$	$\frac{600}{13}$	

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=12, x_{2}=4$
$\operatorname{Min} Z=8800$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN $Z=600 \times 1+500 \times 2$
subject to
$2 \times 1+\times 2>=80$
$\mathrm{x} 1+2 \times 2>=60$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=600 x_{1}+500 x_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \geq 80 \\
x_{1}+2 x_{2} & \geq 60
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{1}
2. As the constraint 2 is of type $' \geq$ ' we should subtract surplus variable S_{2} and add artificial variable A_{2}

After introducing surplus,artificial variables

$\operatorname{Min} Z=600 x_{1}+500 x_{2}+0 S_{1}+0 S_{2}+M A_{1}+M A_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2}-S_{1}+A_{1} & =80 \\
x_{1}+2 x_{2}-S_{2}+A_{2} & =60
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0$

Iteration-1		C_{j}	600	500	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
A_{1}	M	80	2	1	-1	0	1	0	$\frac{80}{1}=80$
$\boldsymbol{A}_{\mathbf{2}}$	M	60	1	$\mathbf{(2)}$	0	-1	0	1	$\frac{60}{2}=30 \rightarrow$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3 M}$	$\mathbf{3 M}$	$-\boldsymbol{M}$	$-\boldsymbol{M}$	\boldsymbol{M}	\boldsymbol{M}	
		$C_{j}-Z_{j}$	$-3 M+600$	$-3 M+500 \uparrow$	M	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-3 M+500$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 30 and its row index is 2 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 2 .
Entering $=x_{2}$, Departing $=A_{2}$, Key Element $=2$
$R_{2}($ new $)=R_{2}($ old $) \div 2$
R_{1} (new) $=R_{1}$ (old) $-R_{2}$ (new)

Iteration-2		C_{j}	600	500	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{1}} \end{gathered}$
A_{1}	M	50	$\left(\frac{3}{2}\right)$	0	-1	$\frac{1}{2}$	1	$\frac{50}{\frac{3}{2}}=\frac{100}{3} \rightarrow$
x_{2}	500	30	$\frac{1}{2}$	1	0	- $\frac{1}{2}$	0	$\frac{30}{\frac{1}{2}}=60$
$Z=15000$		Z_{j}	$\frac{3 M}{2}+250$	500	-M	$\frac{M}{2}-250$	M	
		$C_{j}-Z_{j}$	$-\frac{3 M}{2}+350 \uparrow$	0	M	$-\frac{M}{2}+250$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{3 M}{2}+350$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is $\frac{100}{3}$ and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is $\frac{3}{2}$.
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=\frac{3}{2}$
$R_{1}($ new $)=R_{1}($ old $) \times \frac{2}{3}$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{2} R_{1}$ (new)

Iteration-3		C_{j}	600	500	0	0	

\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	600	$\frac{100}{3}$	1	0	$-\frac{2}{3}$	$\frac{1}{3}$	
x_{2}	500	$\frac{40}{3}$	0	1	$\frac{1}{3}$	$-\frac{2}{3}$	
$\boldsymbol{Z}=\frac{\mathbf{8 0 0 0 0}}{\mathbf{3}}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{6 0 0}$	$\mathbf{5 0 0}$	$-\frac{\mathbf{7 0 0}}{\mathbf{3}}$	$\mathbf{- \frac { 4 0 0 } { \mathbf { 3 } }}$	
	$C_{j}-Z_{j}$	0	0	$\frac{700}{3}$	$\frac{400}{3}$		

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{100}{3}, x_{2}=\frac{40}{3}$
$\operatorname{Min} Z=\frac{80000}{3}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN $Z=x 1+x 2$
subject to
$2 \times 1+\mathrm{x} 2>=4$
$\mathrm{x} 1+7 \mathrm{x} 2>=7$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=x_{1}+x_{2}$
subject to

$$
\begin{array}{r}
2 x_{1}+x_{2} \geq 4 \\
x_{1}+7 x_{2} \geq 7
\end{array}
$$

and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{1}
2. As the constraint 2 is of type $' \geq$ ' we should subtract surplus variable S_{2} and add artificial variable A_{2}

After introducing surplus,artificial variables

$\operatorname{Min} Z=x_{1}+x_{2}+0 S_{1}+0 S_{2}+M A_{1}+M A_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2}-S_{1}+A_{1} & =4 \\
x_{1}+7 x_{2} & -S_{2}+A_{2}
\end{aligned}=7
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0$

Iteration-1		C_{j}	1	1	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$ A_{1}
M	4	2	1	-1	0	1	0	$\frac{4}{1}=4$	
$\boldsymbol{A}_{\mathbf{2}}$	M	$\mathbf{7}$	1	$\mathbf{(7)}$	0	-1	0	1	$\frac{7}{7}=1 \rightarrow$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3 M}$	$\mathbf{8 M}$	$-\boldsymbol{M}$	$-\boldsymbol{M}$	\boldsymbol{M}	\boldsymbol{M}	
		$C_{j}-Z_{j}$	$-3 M+1$	$-8 M+1 \uparrow$	M	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-8 M+1$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 1 and its row index is 2 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 7 .
Entering $=x_{2}$, Departing $=A_{2}$, Key Element $=7$
$R_{2}($ new $)=R_{2}($ old $) \div 7$
R_{1} (new) $=R_{1}$ (old) $-R_{2}$ (new)

Iteration-2		C_{j}	1	1	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	\boldsymbol{A}_{1}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{1}} \end{gathered}$
A_{1}	M	3	$\left(\frac{13}{7}\right)$	0	-1	$\frac{1}{7}$	1	$\frac{3}{\frac{13}{7}}=\frac{21}{13} \rightarrow$
x_{2}	1	1	$\frac{1}{7}$	1	0	- $\frac{1}{7}$	0	$\frac{1}{\frac{1}{7}}=7$
$Z=1$		Z_{j}	$\frac{13 M}{7}+\frac{1}{7}$	1	-M	$\frac{M}{7}-\frac{1}{7}$	M	
		$C_{j}-Z_{j}$	$-\frac{13 M}{7}+\frac{6}{7} \uparrow$	0	M	$-\frac{M}{7}+\frac{1}{7}$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{13 M}{7}+\frac{6}{7}$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is $\frac{21}{13}$ and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is $\frac{13}{7}$.
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=\frac{13}{7}$
$R_{1}($ new $)=R_{1}($ old $) \times \frac{7}{13}$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{7} R_{1}$ (new)
1
C_{j} \square
0
0

\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	1	$\frac{21}{13}$	1	0	$-\frac{7}{13}$	$\frac{1}{13}$	
x_{2}	1	$\frac{10}{13}$	0	1	$\frac{1}{13}$	$-\frac{2}{13}$	
$\boldsymbol{Z}=\frac{\mathbf{3 1}}{\mathbf{1 3}}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{1}$	$\mathbf{1}$	$-\frac{\mathbf{6}}{\mathbf{1 3}}$	$-\frac{\mathbf{1}}{\mathbf{1 3}}$	
	$C_{j}-Z_{j}$	0	0	$\frac{6}{13}$	$\frac{1}{13}$		

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{21}{13}, x_{2}=\frac{10}{13}$
$\operatorname{Min} Z=\frac{31}{13}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} \mathbf{1}+\mathbf{2 x} \mathbf{2}$
subject to
$5 \times 1+\mathrm{x} 2>=10$
$2 \times 1+2 \times 2>=12$
$\mathrm{x} 1+4 \times 2>=12$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
subject to

$$
\begin{aligned}
5 x_{1}+x_{2} & \geq 10 \\
2 x_{1}+2 x_{2} & \geq 12 \\
x_{1}+4 x_{2} & \geq 12
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{2}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{3}

After introducing surplus,artificial variables

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}-M A_{1}-M A_{2}-M A_{3}$
subject to

$$
\begin{array}{rlrl}
5 x_{1}+x_{2}-S_{1} & +A_{1} & =10 \\
2 x_{1}+2 x_{2} & -S_{2} & \\
x_{1}+4 x_{2} & -S_{3} & =12 \\
+A_{3} & =12
\end{array}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1}, A_{2}, A_{3} \geq 0$

Iteration-1	C_{j}	3	2	0	0	0	$-M$	$-M$	$-M$		
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
$\boldsymbol{A}_{\mathbf{1}}$	$-M$	10	$\mathbf{(5)}$	1	-1	0	0	1	0	0	$\frac{10}{5}=2 \rightarrow$
A_{2}	$-M$	12	2	2	0	-1	0	0	1	0	$\frac{12}{2}=6$

A_{3}	$-M$	12	1	4	0	0	-1	0	0	1	$\frac{12}{1}=12$
$Z=\mathbf{0}$		Z_{j}	$-8 M$	$-7 M$	M	M	M	$-M$	$-M$	$-M$	
		$C_{j}-Z_{j}$	$8 M+3 \uparrow$	$7 M+2$	$-M$	$-M$	$-M$	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is $8 M+3$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 5 .
Entering $=x_{1}$, Departing $=A_{1}$, Key Element $=5$
$R_{1}($ new $)=R_{1}($ old $) \div 5$
R_{2} (new) $=R_{2}($ old $)-2 R_{1}$ (new)
R_{3} (new) $=R_{3}$ (old) $-R_{1}$ (new)

Iteration-2	C_{j}	3	2	0	0	0	$-M$	$-M$		
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
x_{1}	3	2	1	0.2	-0.2	0	0	0	0	$\frac{2}{0.2}=10$
$A_{\mathbf{2}}$	$-M$	8	0	1.6	0.4	-1	0	1	0	$\frac{8}{1.6}=5$
$\boldsymbol{A}_{\mathbf{3}}$	$-M$	10	0	$\mathbf{(3 . 8}$	0.2	0	-1	0	1	$\frac{10}{3.8}=2.6316 \rightarrow$
$\boldsymbol{Z}=\mathbf{6}$		$Z_{\boldsymbol{j}}$	$\mathbf{3}$	$\frac{\mathbf{2 7 M}}{\mathbf{5}}+\mathbf{0 . 6}$	$-\frac{\mathbf{3 M}}{\mathbf{5}}-\mathbf{0 . 6}$	\boldsymbol{M}	\boldsymbol{M}	$-\boldsymbol{M}$	$-\boldsymbol{M}$	

Positive maximum $C_{j}-Z_{j}$ is $\frac{27 M}{5}+1.4$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 2.6316 and its row index is 3 . So, the leaving basis variable is A_{3}.
\therefore The pivot element is 3.8.

Entering $=x_{2}$, Departing $=A_{3}$, Key Element $=3.8$
$R_{3}($ new $)=R_{3}($ old $) \times 0.2632$
R_{1} (new) $=R_{1}$ (old) $-0.2 R_{3}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)-1.6 R_{3}($ new $)$

Iteration-3		C_{j}	3	2	0	0	0	-M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	A_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{3}} \end{gathered}$
x_{1}	3	1.4737	1	0	-0.2105	0	0.0526	0	$\frac{1.4737}{0.0526}=28$
A_{2}	-M	3.7895	0	0	0.3158	-1	(0.4211)	1	$\frac{3.7895}{0.4211}=9 \rightarrow$
x_{2}	2	2.6316	0	1	0.0526	0	-0.2632	0	---
$Z=9.6842$		Z_{j}	3	2	$-\frac{6 M}{19}-0.5263$	M	$-\frac{8 M}{19}-0.3684$	-M	
		$C_{j}-Z_{j}$	0	0	$\frac{6 M}{19}+0.5263$	-M	$\frac{8 M}{19}+0.3684 \uparrow$	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{8 M}{19}+0.3684$ and its column index is 5 . So, the entering variable is S_{3}.

Minimum ratio is 9 and its row index is 2 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 0.4211 .
Entering $=S_{3}$, Departing $=A_{2}$, Key Element $=0.4211$
$R_{2}($ new $)=R_{2}($ old $) \times 2.375$
$R_{1}($ new $)=R_{1}($ old $)-0.0526 R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)+0.2632 R_{2}($ new $)$

Iteration-4		C_{j}	3	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{S}_{\mathbf{2}}$
$\boldsymbol{x}_{\mathbf{1}}$	3	1	1	0	-0.25	$\mathbf{(0 . 1 2 5}$	0	

							$\frac{1}{0.125}=8 \rightarrow$	
S_{3}	0	9	0	0	0.75	-2.375	1	---
x_{2}	2	5	0	1	0.25	-0.625	0	$\boldsymbol{- - -}$
$\boldsymbol{Z}=\mathbf{1 3}$		Z_{j}	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{- 0 . 2 5}$	$\mathbf{- 0 . 8 7 5}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	0	0	0.25	$0.875 \uparrow$	0	

Positive maximum $C_{j}-Z_{j}$ is 0.875 and its column index is 4 . So, the entering variable is S_{2}.
Minimum ratio is 8 and its row index is 1 . So, the leaving basis variable is x_{1}.
\therefore The pivot element is 0.125 .
Entering $=S_{2}$, Departing $=x_{1}$, Key Element $=0.125$
$R_{1}($ new $)=R_{1}($ old $) \times 8$
$R_{2}($ new $)=R_{2}($ old $)+2.375 R_{1}$ (new)
$R_{3}($ new $)=R_{3}($ old $)+0.625 R_{1}$ (new)

Iteration-5		C_{j}	3	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{S}_{\mathbf{1}}$
S_{2}	0	8	8	0	$\mathbf{(- 2)}$	1	0	$\boldsymbol{- - -}$
S_{3}	0	28	19	0	-4	0	1	$\boldsymbol{- - -}$
x_{2}	2	10	5	1	-1	0	0	$\boldsymbol{- - -}$
$\boldsymbol{Z}=\mathbf{2 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{1 0}$	$\mathbf{2}$	$\mathbf{- 2}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	-7	0	$2 \uparrow$	0	0		

Variable S_{1} should enter into the basis, but all the coefficients in the S_{1} column are negative or zero. So S_{1} can not be entered into the basis.

Hence, the solution to the given problem is unbounded.

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAXZ $=\mathbf{2 x} 1+\mathbf{4 x} \mathbf{2}$
subject to
$5 \times 1+4 \times 2<=200$
$3 \times 1+5 \times 2<=150$
$5 \times 1+4 \times 2>=100$
$8 \times 1+4 \times 2>=80$
and $x 1, x 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=2 x_{1}+4 x_{2}$
subject to

$$
\begin{aligned}
5 x_{1}+4 x_{2} & \leq 200 \\
3 x_{1}+5 x_{2} & \leq 150 \\
5 x_{1}+4 x_{2} & \geq 100 \\
8 x_{1}+4 x_{2} & \geq 80 \\
\text { and } x_{1}, x_{2} & \geq 0 ;
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{1}
4. As the constraint 4 is of type ' \geq ' we should subtract surplus variable S_{4} and add artificial variable A_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Max} Z=2 x_{1}+4 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}+0 S_{4}-M A_{1}-M A_{2}$
subject to

$$
\begin{aligned}
5 x_{1}+4 x_{2}+S_{1} & =200 \\
3 x_{1}+5 x_{2}+S_{2} & =150 \\
5 x_{1}+4 x_{2} & -S_{3}+A_{1} \\
8 x_{1}+4 x_{2} & =100 \\
-S_{4}+A_{2} & =80
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2} \geq 0$

Iteration-1		C_{j}	2	4	0	0	0	0	$-M$	$-M$	
\boldsymbol{B}	C_{B}	X_{B}	x_{1}	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{4}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$

S_{1}	0	200	5	4	1	0	0	0	0	0	$\frac{200}{5}=40$
S_{2}	0	150	3	5	0	1	0	0	0	0	$\frac{150}{3}=50$
A_{1}	$-M$	100	5	4	0	0	-1	0	1	0	$\frac{100}{5}=20$
$A_{\mathbf{2}}$	$-M$	80	$\mathbf{(8)}$	4	0	0	0	-1	0	1	$\frac{80}{8}=10 \rightarrow$
$Z=\mathbf{0}$		Z_{j}	$-\mathbf{1 3 M}$	$\mathbf{- 8 M}$	$\mathbf{0}$	$\mathbf{0}$	\boldsymbol{M}	\boldsymbol{M}	$-M$	$-M$	

Positive maximum $C_{j}-Z_{j}$ is $13 M+2$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 10 and its row index is 4 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 8 .
Entering $=x_{1}$, Departing $=A_{2}$, Key Element $=8$
$R_{4}($ new $)=R_{4}($ old $) \div 8$
R_{1} (new) $=R_{1}$ (old) $-5 R_{4}$ (new)
$R_{2}($ new $)=R_{2}($ old $)-3 R_{4}($ new $)$
R_{3} (new) $=R_{3}($ old $)-5 R_{4}($ new $)$

Iteration-2		C_{j}	2	4	0	0	0	0	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{4}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$ S_{1} 0^{2}
150	0	$\frac{3}{2}$	1	0	0	$\frac{5}{8}$	0	$\frac{150}{\frac{3}{2}}=100$		
S_{2}	0	120	0	$\frac{7}{2}$	0	1	0	$\frac{3}{8}$	0	$\frac{120}{7}=\frac{240}{7}$
A_{1}	$-M$	50	0	$\frac{3}{2}$	0	0	-1	$\frac{5}{8}$	1	$\frac{50}{3}=\frac{100}{3}$

x_{1}			$\left(\frac{\mathbf{1}}{\mathbf{2}}\right)$				$-\frac{1}{8}$		$\frac{10}{\frac{1}{2}}=20 \rightarrow$	
$\boldsymbol{Z}=\mathbf{2 0}$		Z_{j}	$\mathbf{2}$	$-\frac{\mathbf{3 M}}{\mathbf{2}}+\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	\boldsymbol{M}	$\mathbf{-}-\frac{\mathbf{5 M}}{\mathbf{8}}-\frac{\mathbf{1}}{\mathbf{4}}$	$\mathbf{- M}$	
	$C_{j}-Z_{j}$	0	$\frac{3 M}{2}+3 \uparrow$	0	0	$-M$	$\frac{5 M}{8}+\frac{1}{4}$	0		

Positive maximum $C_{j}-Z_{j}$ is $\frac{3 M}{2}+3$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 20 and its row index is 4 . So, the leaving basis variable is x_{1}.
\therefore The pivot element is $\frac{1}{2}$.
Entering $=x_{2}$, Departing $=x_{1}$, Key Element $=\frac{1}{2}$
$R_{4}($ new $)=R_{4}($ old $) \times 2$
$R_{1}($ new $)=R_{1}($ old $)-\frac{3}{2} R_{4}$ (new)
$R_{2}($ new $)=R_{2}($ old $)-\frac{7}{2} R_{4}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-\frac{3}{2} R_{4}($ new $)$

Iteration-3		C_{j}	2	4	0	0	0	0	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	\boldsymbol{S}_{4}	$\boldsymbol{A}_{\boldsymbol{1}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{S}_{\mathbf{4}}}$
S_{1}	0	120	-3	0	1	0	0	1	0	$\frac{120}{1}=120$
S_{2}	0	50	-7	0	0	1	0	$\frac{5}{4}$	0	$\frac{5}{\frac{5}{4}}=40$
$A_{\mathbf{1}}$	$-M$	20	-3	0	0	0	-1	$(\mathbf{1})$	1	$\frac{20}{1}=20 \rightarrow$
x_{2}	4	20	2	1	0	0	0	$-\frac{1}{4}$	0	

$\boldsymbol{Z}=\mathbf{8 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3 M}+\mathbf{8}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	\boldsymbol{M}	$-\boldsymbol{M}-\mathbf{1}$	$\mathbf{-} \boldsymbol{M}$	
		$C_{j}-Z_{j}$	$-3 M-6$	0	0	0	$-M$	$M+1 \uparrow$	0	

Positive maximum $C_{j}-Z_{j}$ is $M+1$ and its column index is 6 . So, the entering variable is S_{4}.

Minimum ratio is 20 and its row index is 3 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 1 .
Entering $=S_{4}$, Departing $=A_{1}$, Key Element $=1$
$R_{3}($ new $)=R_{3}($ old $)$
$R_{1}($ new $)=R_{1}($ old $)-R_{3}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)-\frac{5}{4} R_{3}($ new $)$
$R_{4}($ new $)=R_{4}($ old $)+\frac{1}{4} R_{3}($ new $)$

Iteration-4		C_{j}	2	4	0	0	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	$\begin{gathered} \text { MinRatio } \\ \qquad \frac{X_{B}}{S_{3}} \end{gathered}$
S_{1}	0	100	0	0	1	0	1	0	$\frac{100}{1}=100$
S_{2}	0	25	$-\frac{13}{4}$	0	0	1	$\binom{5}{4}$	0	$\frac{25}{\frac{5}{4}}=20 \rightarrow$
S_{4}	0	20	-3	0	0	0	-1	1	---
x_{2}	4	25	$\frac{5}{4}$	1	0	0	$-\frac{1}{4}$	0	---
$Z=100$		Z_{j}	5	4	0	0	-1	0	
		$C_{j}-Z_{j}$	-3	0	0	0	$1 \uparrow$	0	

Positive maximum $C_{j}-Z_{j}$ is 1 and its column index is 5 . So, the entering variable is S_{3}.
Minimum ratio is 20 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is $\frac{5}{4}$.

Entering $=S_{3}$, Departing $=S_{2}$, Key Element $=\frac{5}{4}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{4}{5}$
R_{1} (new) $=R_{1}$ (old) $-R_{2}$ (new)
$R_{3}($ new $)=R_{3}($ old $)+R_{2}($ new $)$
$R_{4}($ new $)=R_{4}($ old $)+\frac{1}{4} R_{2}($ new $)$

Iteration-5		C_{j}	2	4	0	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{4}}$	MinRatio
S_{1}	0	80	$\frac{13}{5}$	0	1	$-\frac{4}{5}$	0	0	
S_{3}	0	20	$-\frac{13}{5}$	0	0	$\frac{4}{5}$	1	0	
S_{4}	0	40	$-\frac{28}{5}$	0	0	$\frac{4}{5}$	0	1	
x_{2}	4	30	$\frac{3}{5}$	1	0	$\frac{1}{5}$	0	0	
$\boldsymbol{Z}=\mathbf{1 2 0}$		$Z_{\boldsymbol{j}}$	$\frac{\mathbf{1 2}}{\mathbf{5}}$	$\mathbf{4}$	$\mathbf{0}$	$\frac{\mathbf{4}}{\mathbf{5}}$	$\mathbf{0}$	$\mathbf{0}$	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=30$
$\operatorname{Max} Z=120$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAXZ $=3 \times 1+2 \times 2+3 \times 3-\times 4$
subject to
$\mathrm{x} 1+2 \times 2+3 \times 3=15$
$2 \times 1+\times 2+5 \times 3=20$
$\mathrm{x} 1+2 \times 2+\mathrm{x} 3+\mathrm{x} 4=10$
and $x 1, x 2, x 3, x 4>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+3 x_{3}-x_{4}$
subject to

$$
\begin{array}{rlr}
x_{1}+2 x_{2}+3 x_{3} & =15 \\
2 x_{1}+x_{2}+5 x_{3} & =20 \\
x_{1}+2 x_{2}+x_{3}+x_{4} & =10 \\
\text { and } x_{1}, x_{2}, x_{3}, x_{4} \geq 0 & &
\end{array}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' $=$ ' we should add artificial variable A_{1}
2. As the constraint 2 is of type ' $=$ ' we should add artificial variable A_{2}
3. As the constraint 3 is of type ' $=$ ' we should add artificial variable A_{3}

After introducing artificial variables

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+3 x_{3}-x_{4}-M A_{1}-M A_{2}-M A_{3}$
subject to

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+A_{1} & =15 \\
2 x_{1}+x_{2}+5 x_{3}+A_{2} & =20 \\
x_{1}+2 x_{2}+x_{3}+x_{4} & +A_{3}
\end{aligned}=10
$$

and $x_{1}, x_{2}, x_{3}, x_{4}, A_{1}, A_{2}, A_{3} \geq 0$

Iteration-1		C_{j}	3	2	3	-1	$-M$	$-M$	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{3}}}$ A_{1}
$-M$	15	1	2	3	0	1	0	0	$\frac{15}{3}=5$	
$\boldsymbol{A}_{\mathbf{2}}$	$-M$	20	2	1	$\mathbf{(5)}$	0	0	1	0	$\frac{20}{5}=4 \rightarrow$

A_{3}	$-M$	10	1	2	1	1	0	0	1	$\frac{10}{1}=10$
$Z=\mathbf{0}$		Z_{j}	$-4 M$	$\mathbf{- 5 M}$	$\mathbf{- 9 M}$	$\mathbf{- M}$	$-M$	$-M$	$-M$	
		$C_{j}-Z_{j}$	$4 M+3$	$5 M+2$	$9 M+3 \uparrow$	$M-1$	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is $9 M+3$ and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is 4 and its row index is 2 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 5 .
Entering $=x_{3}$, Departing $=A_{2}$, Key Element $=5$
$R_{2}($ new $)=R_{2}($ old $) \div 5$
R_{1} (new) $=R_{1}($ old $)-3 R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-R_{2}($ new $)$

Iteration-2		C_{j}	3	2	3	-1	-M	-M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	A_{1}	A_{3}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
A_{1}	-M	3	- $\frac{1}{5}$	$\left(\frac{7}{5}\right)$	0	0	1	0	$\frac{3}{\frac{7}{5}}=\frac{15}{7} \rightarrow$
x_{3}	3	4	$\frac{2}{5}$	$\frac{1}{5}$	1	0	0	0	$\frac{4}{\frac{1}{5}}=20$
A_{3}	-M	6	$\frac{3}{5}$	$\frac{9}{5}$	0	1	0	1	$\frac{6}{\frac{9}{5}}=\frac{10}{3}$
$Z=12$		Z_{j}	$-\frac{2 M}{5}+\frac{6}{5}$	$-\frac{16 M}{5}+\frac{3}{5}$	3	-M	-M	-M	
		$C_{j}-Z_{j}$	$\frac{2 M}{5}+\frac{9}{5}$	$\frac{16 M}{5}+\frac{7}{5} \uparrow$	0	M-1	0	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{16 M}{5}+\frac{7}{5}$ and its column index is 2 . So, the entering variable is x_{2}.

Minimum ratio is $\frac{15}{7}$ and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is $\frac{7}{5}$.
Entering $=x_{2}$, Departing $=A_{1}$, Key Element $=\frac{7}{5}$
$R_{1}($ new $)=R_{1}($ old $) \times \frac{5}{7}$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{5} R_{1}$ (new)
R_{3} (new) $=R_{3}($ old $)-\frac{9}{5} R_{1}$ (new)

Iteration-3		C_{j}	3	2	3	-1	-M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	A_{3}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{4}} \end{gathered}$
x_{2}	2	$\frac{15}{7}$	- $\frac{1}{7}$	1	0	0	0	---
x_{3}	3	$\frac{25}{7}$	$\frac{3}{7}$	0	1	0	0	---
A_{3}	-M	$\frac{15}{7}$	$\frac{6}{7}$	0	0	(1)	1	$\frac{\frac{15}{7}}{1}=\frac{15}{7} \rightarrow$
$Z=15$		Z_{j}	$-\frac{6 M}{7}+1$	2	3	-M	-M	
		$C_{j}-Z_{j}$	$\frac{6 M}{7}+2$	0	0	M-1 \uparrow	0	

Positive maximum $C_{j}-Z_{j}$ is $M-1$ and its column index is 4 . So, the entering variable is x_{4}.
Minimum ratio is $\frac{15}{7}$ and its row index is 3 . So, the leaving basis variable is A_{3}.
\therefore The pivot element is 1 .
Entering $=x_{4}$, Departing $=A_{3}$, Key Element $=1$
R_{3} (new) $=R_{3}$ (old)
$R_{1}($ new $)=R_{1}$ (old)
$R_{2}($ new $)=R_{2}($ old $)$

Iteration-4		C_{j}	3	2	3	-1	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	\boldsymbol{x}_{4}	MinRatio $\frac{X_{B}}{x_{1}}$
x_{2}	2	$\frac{15}{7}$	$-\frac{1}{7}$	1	0	0	---
x_{3}	3	$\frac{25}{7}$	$\frac{3}{7}$	0	1	0	$\frac{\frac{25}{7}}{\frac{3}{7}}=\frac{25}{3}$
x_{4}	-1	$\frac{15}{7}$	$\left(\frac{6}{7}\right)$	0	0	1	$\frac{\frac{15}{7}}{\frac{6}{7}}=\frac{5}{2} \rightarrow$
$Z=\frac{90}{7}$		Z_{j}	$\frac{1}{7}$	2	3	-1	
		$C_{j}-Z_{j}$	$\frac{20}{7} \uparrow$	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{20}{7}$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is $\frac{5}{2}$ and its row index is 3 . So, the leaving basis variable is x_{4}.
\therefore The pivot element is $\frac{6}{7}$.
Entering $=x_{1}$, Departing $=x_{4}$, Key Element $=\frac{6}{7}$
$R_{3}($ new $)=R_{3}($ old $) \times \frac{7}{6}$
$R_{1}($ new $)=R_{1}($ old $)+\frac{1}{7} R_{3}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)-\frac{3}{7} R_{3}$ (new)

BigM method							
\boldsymbol{B}		C_{j}					
x_{2}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	MinRatio
x_{3}	2	$\frac{5}{2}$	0	1	0	$\frac{1}{6}$	
x_{1}	3	$\frac{5}{2}$	0	0	1	$-\frac{1}{2}$	
$\boldsymbol{Z}=\mathbf{2 0}$	3	$\frac{5}{2}$	1	0	0	$\frac{7}{6}$	
		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\frac{7}{3}$	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{5}{2}, x_{2}=\frac{5}{2}, x_{3}=\frac{5}{2}, x_{4}=0$
$\operatorname{Max} Z=20$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} \mathbf{1}+\mathbf{7 x} \mathbf{2}+\mathbf{6 x} \mathbf{3}$
subject to
$2 \times 1+4 \times 2+7 \times 3>=4$
$\mathrm{x} 1+7 \times 2+2 \times 3<=7$
$3 \times 1+6 \times 2+5 \times 3<=25$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+7 x_{2}+6 x_{3}$
subject to

$$
\begin{aligned}
2 x_{1}+4 x_{2} & +7 x_{3} \geq 4 \\
x_{1}+7 x_{2} & +2 x_{3} \leq 7 \\
3 x_{1}+6 x_{2} & +5 x_{3} \leq 25 \\
\text { and } x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_{1} and add artificial variable A_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack,surplus,artificial variables

$\operatorname{Max} Z=3 x_{1}+7 x_{2}+6 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}-M A_{1}$
subject to

$$
\begin{array}{rlrl}
2 x_{1} & +4 x_{2}+7 x_{3}-S_{1} & +A_{1} & =4 \\
x_{1} & +7 x_{2}+2 x_{3}+S_{2} & =7 \\
3 x_{1} & +6 x_{2}+5 x_{3} & +S_{3} & =25
\end{array}
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3}, A_{1} \geq 0$

Iteration-1		C_{j}	3	7	6	0	0	0	$-M$	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	\boldsymbol{x}_{3}	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{3}}}$
$\boldsymbol{A}_{\boldsymbol{1}}$	$-M$	4	2	4	$\mathbf{(7)}$	-1	0	0	1	$\frac{4}{7}=\frac{4}{7} \rightarrow$
S_{1}	0	7	1	7	2	0	1	0	0	$\frac{7}{2}=\frac{7}{2}$

S_{2}	0	25	3	6	5	0	0	1	0	$\frac{25}{5}=5$
$Z=\mathbf{0}$		Z_{j}	$-2 M$	$-4 M$	$-7 M$	M	$\mathbf{0}$	$\mathbf{0}$	$-M$	
		$C_{j}-Z_{j}$	$2 M+3$	$4 M+7$	$7 M+6 \uparrow$	$-M$	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is $7 M+6$ and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is $\frac{4}{7}$ and its row index is 1 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is 7 .
Entering $=x_{3}$, Departing $=A_{1}$, Key Element $=7$
$R_{1}($ new $)=R_{1}($ old $) \div 7$
$R_{2}($ new $)=R_{2}($ old $)-2 R_{1}$ (new $)$
R_{3} (new) $=R_{3}$ (old) $-5 R_{1}$ (new)

Iteration-2		C_{j}	3	7	6	0	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	\boldsymbol{S}_{3}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
x_{3}	6	$\frac{4}{7}$	$\frac{2}{7}$	$\frac{4}{7}$	1	$-\frac{1}{7}$	0	0	$\frac{\frac{4}{7}}{\frac{4}{7}}=1$
S_{1}	0	$\frac{41}{7}$	$\frac{3}{7}$	$\left(\frac{41}{7}\right)$	0	$\frac{2}{7}$	1	0	$\frac{\frac{41}{7}}{\frac{41}{7}}=1 \rightarrow$
S_{2}	0	$\frac{155}{7}$	$\frac{11}{7}$	$\frac{22}{7}$	0	$\frac{5}{7}$	0	1	$\frac{\frac{155}{7}}{\frac{22}{7}}=\frac{155}{22}$
$Z=\frac{24}{7}$		Z_{j}	$\frac{12}{7}$	$\frac{24}{7}$	6	$-\frac{6}{7}$	0	0	
		$C_{j}-Z_{j}$	$\frac{9}{7}$	$\frac{25}{7} \uparrow$	0	$\frac{6}{7}$	0	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{25}{7}$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 1 and its row index is 2 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is $\frac{41}{7}$.
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=\frac{41}{7}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{7}{41}$
$R_{1}($ new $)=R_{1}($ old $)-\frac{4}{7} R_{2}$ (new)
R_{3} (new) $=R_{3}($ old $)-\frac{22}{7} R_{2}$ (new)

Iteration-3		C_{j}	3	7	6	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
$\boldsymbol{x}_{\mathbf{3}}$	6	0	$\mathbf{(\frac { \mathbf { 1 0 } } { \mathbf { 4 1 } })}$	0	1	$-\frac{7}{41}$	$-\frac{4}{41}$	0	$\frac{0}{\frac{10}{41}}=0 \rightarrow$
x_{2}	7	1	$\frac{3}{41}$	1	0	$\frac{2}{41}$	$\frac{7}{41}$	0	$\frac{1}{3}=\frac{41}{3}$
S_{2}	0	19	$\frac{55}{41}$	0	0	$\frac{23}{41}$	$-\frac{22}{41}$	1	$\frac{19}{55}=\frac{779}{55}$
$\boldsymbol{Z}=7$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\frac{\mathbf{8 1}}{41}$	$\mathbf{7}$	$\mathbf{6}$	$-\frac{\mathbf{2 8}}{41}$	$\frac{\mathbf{2 5}}{41}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$\frac{42}{41} \uparrow$	0	0	$\frac{28}{41}$	$\frac{25}{41}$	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{42}{41}$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 0 and its row index is 1 . So, the leaving basis variable is x_{3}.
\therefore The pivot element is $\frac{10}{41}$.

Entering $=x_{1}$, Departing $=x_{3}$, Key Element $=\frac{10}{41}$
$R_{1}($ new $)=R_{1}($ old $) \times \frac{41}{10}$
R_{2} (new) $=R_{2}\left(\right.$ old) $-\frac{3}{41} R_{1}$ (new)
$R_{3}($ new $)=R_{3}$ (old) $-\frac{55}{41} R_{1}$ (new)

Iteration-4		C_{j}	3	7	6	0	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{1}} \end{gathered}$
x_{1}	3	0	1	0	$\frac{41}{10}$	$-\frac{7}{10}$	$-\frac{2}{5}$	0	---
x_{2}	7	1	0	1	$-\frac{3}{10}$	$\left(\frac{1}{10}\right)$	$\frac{1}{5}$	0	$\frac{1}{\frac{1}{10}}=10 \rightarrow$
S_{2}	0	19	0	0	$-\frac{11}{2}$	$\frac{3}{2}$	0	1	$\frac{19}{\frac{3}{2}}=\frac{38}{3}$
$Z=7$		Z_{j}	3	7	$\frac{51}{5}$	$-\frac{7}{5}$	$\frac{1}{5}$	0	
		$C_{j}-Z_{j}$	0	0	$-\frac{21}{5}$	$\frac{7}{5} \uparrow$	- $\frac{1}{5}$	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{7}{5}$ and its column index is 4 . So, the entering variable is S_{1}.
Minimum ratio is 10 and its row index is 2 . So, the leaving basis variable is x_{2}.
\therefore The pivot element is $\frac{1}{10}$.
Entering $=S_{1}$, Departing $=x_{2}$, Key Element $=\frac{1}{10}$
$R_{2}($ new $)=R_{2}($ old $) \times 10$
$R_{1}($ new $)=R_{1}($ old $)+\frac{7}{10} R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-\frac{3}{2} R_{2}$ (new)

Iteration-5		C_{j}	3	7	6	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
x_{1}	3	7	1	7	2	0	1	0	
S_{1}	0	10	0	10	-3	1	2	0	
S_{2}	0	4	0	-15	-1	0	-3	1	
$\boldsymbol{Z}=\mathbf{2 1}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{2 1}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	
	$C_{j}-Z_{\boldsymbol{j}}$	0	-14	0	0	-3	0		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=7, x_{2}=0, x_{3}=0$
$\operatorname{Max} Z=21$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MIN $Z=4 \times 1-2 \times 2$
subject to
$\mathrm{x} 1+\mathrm{x} 2<=14$
$3 \times 1+2 \times 2>=36$
$2 \times 1+\times 2>=24$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Min} Z=4 x_{1}-2 x_{2}$
subject to

$$
\begin{array}{r}
x_{1}+x_{2} \leq 14 \\
3 x_{1}+2 x_{2} \geq 36 \\
2 x_{1}+x_{2} \geq 24 \\
\text { and } x_{1}, x_{2} \geq 0
\end{array}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_{2} and add artificial variable A_{1}
3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_{3} and add artificial variable A_{2}

After introducing slack,surplus,artificial variables

$\operatorname{Min} Z=4 x_{1}-2 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}+M A_{1}+M A_{2}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}+S_{1} & =14 \\
3 x_{1}+2 x_{2}-S_{2}+A_{1} & =36 \\
2 x_{1}+x_{2} & -S_{3}+A_{2}
\end{aligned}=24
$$

and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1}, A_{2} \geq 0$

Iteration-1		C_{j}	4	-2	0	0	0	M	M	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$
S_{1}	0	14	1	1	1	0	0	0	0	$\frac{14}{1}=14$
A_{1}	M	36	3	2	0	-1	0	1	0	$\frac{36}{3}=12$

$\boldsymbol{A}_{\mathbf{2}}$	M	24	$\mathbf{(2)}$	1	0	0	-1	0	1	$\frac{24}{2}=12 \rightarrow$
$Z=\mathbf{0}$		Z_{j}	$\mathbf{5 M}$	$\mathbf{3 M}$	$\mathbf{0}$	$\mathbf{- M}$	$-\boldsymbol{M}$	\boldsymbol{M}	\boldsymbol{M}	
		$C_{j}-Z_{j}$	$-5 M+4 \uparrow$	$-3 M-2$	0	M	M	0	0	

Negative minimum $C_{j}-Z_{j}$ is $-5 M+4$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 12 and its row index is 3 . So, the leaving basis variable is A_{2}.
\therefore The pivot element is 2 .
Entering $=x_{1}$, Departing $=A_{2}$, Key Element $=2$
$R_{3}($ new $)=R_{3}($ old $) \div 2$
R_{1} (new) $=R_{1}$ (old) $-R_{3}$ (new)
R_{2} (new) $=R_{2}$ (old) $-3 R_{3}$ (new)

Iteration-2		C_{j}	4	-2	0	0	0	M	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	\boldsymbol{x}_{2}	S_{1}	S_{2}	S_{3}	A_{1}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{S_{3}} \end{gathered}$
S_{1}	0	2	0	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	$\frac{2}{\frac{1}{2}}=4$
A_{1}	M	0	0	$\frac{1}{2}$	0	-1	$\left(\frac{3}{2}\right)$	1	$\frac{0}{\frac{3}{2}}=0 \rightarrow$
x_{1}	4	12	1	$\frac{1}{2}$	0	0	- $\frac{1}{2}$	0	---
$Z=48$		Z_{j}	4	$\frac{M}{2}+2$	0	-M	$\frac{3 M}{2}-2$	M	
		$C_{j}-Z_{j}$	0	$-\frac{M}{2}-4$	0	M	$-\frac{3 M}{2}+2 \uparrow$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{3 M}{2}+2$ and its column index is 5 . So, the entering variable is S_{3}.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is A_{1}.
\therefore The pivot element is $\frac{3}{2}$.

Entering $=S_{3}$, Departing $=A_{1}$, Key Element $=\frac{3}{2}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{2}{3}$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{2} R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)+\frac{1}{2} R_{2}($ new $)$

Iteration-3		C_{j}	4	-2	0	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{2}} \end{gathered}$
S_{1}	0	2	0	$\frac{1}{3}$	1	$\frac{1}{3}$	0	$\frac{2}{\frac{1}{3}}=6$
S_{3}	0	0	0	$\left(\frac{1}{3}\right)$	0	$-\frac{2}{3}$	1	$\frac{0}{\frac{1}{3}}=0 \rightarrow$
x_{1}	4	12	1	$\frac{2}{3}$	0	$-\frac{1}{3}$	0	$\frac{12}{\frac{2}{3}}=18$
$Z=48$		Z_{j}	4	$\frac{8}{3}$	0	$-\frac{4}{3}$	0	
		$C_{j}-Z_{j}$	0	$-\frac{14}{3} \uparrow$	0	$\frac{4}{3}$	0	

Negative minimum $C_{j}-Z_{j}$ is $-\frac{14}{3}$ and its column index is 2 . So, the entering variable is x_{2}.

Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is S_{3}.
\therefore The pivot element is $\frac{1}{3}$.

Entering $=x_{2}$, Departing $=S_{3}$, Key Element $=\frac{1}{3}$
$R_{2}($ new $)=R_{2}($ old $) \times 3$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{3} R_{2}$ (new)
$R_{3}($ new $)=R_{3}($ old $)-\frac{2}{3} R_{2}$ (new)

Iteration-4		C_{j}	4	-2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{S}_{\mathbf{2}}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	2	0	0	1	$\boldsymbol{(1)}$	-1	$\frac{2}{1}=2 \rightarrow$
x_{2}	-2	0	0	1	0	-2	3	---
x_{1}	4	12	1	0	0	1	-2	$\frac{12}{1}=12$
$\boldsymbol{Z}=\mathbf{4 8}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{4}$	$\mathbf{- 2}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{- 1 4}$	

Negative minimum $C_{j}-Z_{j}$ is -8 and its column index is 4 . So, the entering variable is S_{2}.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 1 .
Entering $=S_{2}$, Departing $=S_{1}$, Key Element $=1$
R_{1} (new) $=R_{1}$ (old)
R_{2} (new) $=R_{2}($ old $)+2 R_{1}$ (new)
R_{3} (new) $=R_{3}($ old $)-R_{1}$ (new)

Iteration-5		C_{j}	4	-2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
S_{2}	0	2	0	0	1	1	-1	
x_{2}	-2	4	0	1	2	0	1	
x_{1}	4	10	1	0	-1	0	-1	
$\boldsymbol{Z}=\mathbf{3 2}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{4}$	$\mathbf{- 2}$	$\mathbf{- 8}$	$\mathbf{0}$	$\mathbf{- 6}$	

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $C_{j}-Z_{j}$ | 0 | 0 | 8 | 0 | 6 | |

Since all $C_{j}-Z_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=10, x_{2}=4$
$\operatorname{Min} Z=32$

Solution is provided by AtoZmath.com

