BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 5x1 + x2subject to $5x1 + 2x2 \le 20$ $x1 \ge 3$ $x2 \le 5$ and $x1,x2 \ge 0$

Solution: Problem is

 $\operatorname{Max} Z = 5x_1 + x_2$

subject to

 $5x_1 + 2x_2 \le 20$ $x_1 \ge 3$ $x_2 \le 5$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1
- 3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack, surplus, artificial variables

Max $Z = 5x_1 + x_2 + 0S_1 + 0S_2 + 0S_3 - MA_1$ subject to

 $5x_{1} + 2x_{2} + S_{1} = 20$ $x_{1} - S_{2} + A_{1} = 3$ $x_{2} + S_{3} = 5$ and $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, A_{1} \ge 0$

Iteration-1		C_{j}	5	1	0	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	20	5	2	1	0	0	0	$\frac{20}{5} = 4$
A ₁	- <i>M</i>	3	(1)	0	0	- 1	0	1	$\frac{3}{1} = 3 \rightarrow$

12/22/2011				Digiti in	ounou				
S ₂	0	5	0	1	0	0	1	0	
Z = 0		Z_{j}	-M	0	0	М	0	- <i>M</i>	
		$C_j - Z_j$	$M+5\uparrow$	1	0	- <i>M</i>	0	0	

Positive maximum $C_j - Z_j$ is M + 5 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 3 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 1.

Entering $= x_1$, Departing $= A_1$, Key Element = 1

 $R_2(\text{new}) = R_2(\text{old})$

 $R_1(\text{new}) = R_1(\text{old}) - 5R_2(\text{new})$

 $R_3(\text{new}) = R_3(\text{old})$

Iteration-2		C_j	5	1	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_2}}$
<i>S</i> ₁	0	5	0	2	1	(5)	0	$\frac{5}{5} = 1 \rightarrow$
<i>x</i> ₁	5	3	1	0	0	- 1	0	
S ₂	0	5	0	1	0	0	1	
<i>Z</i> = 15		Z_j	5	0	0	-5	0	
		C_j - Z_j	0	1	0	5 ↑	0	

Positive maximum C_j - Z_j is 5 and its column index is 4. So, the entering variable is S_2 .

Minimum ratio is 1 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 5.

Entering = S_2 , Departing = S_1 , Key Element = 5

 $R_1(\text{new}) = R_1(\text{old}) \div 5$

 $R_2(\text{new}) = R_2(\text{old}) + R_1(\text{new})$

12/22/2017 $R_3(\text{new}) = R_3(\text{old})$

Iteration-3		Cj	5	1	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	<i>S</i> ₃	MinRatio
S ₂	0	1	0	0.4	0.2	1	0	
<i>x</i> ₁	5	4	1	0.4	0.2	0	0	
S ₂	0	5	0	1	0	0	1	
<i>Z</i> = 20		Z_{j}	5	2	1	0	0	
		$C_j - Z_j$	0	- 1	- 1	0	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 4, x_2 = 0$

Max Z = 20

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 3x1 + 8x2subject to x1 + x2 = 200 $x1 \le 80$ $x2 \ge 60$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 3x_1 + 8x_2$

subject to

 $x_1 + x_2 = 200$ $x_1 \le 80$ $x_2 \ge 60$ and $x_1, x_2 \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' = ' we should add artificial variable A_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_1

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

After introducing slack, surplus, artificial variables

Min $Z = 3x_1 + 8x_2 + 0S_1 + 0S_2 + MA_1 + MA_2$ subject to

Iteration-1		C _j	3	8	0	0	M	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
A ₁	М	200	1	1	0	0	1	0	$\frac{200}{1} = 200$
S ₁	0	80	1	0	1	0	0	0	

12/22/2017	7 BigM method									
A ₂	М	60	0	(1)	0	- 1	0	1	$\frac{60}{1} = 60 \rightarrow$	
Z = 0		Z_{j}	М	2 <i>M</i>	0	- <i>M</i>	M	М		
		$C_j - Z_j$	- <i>M</i> +3	$-2M+8$ \uparrow	0	М	0	0		

Negative minimum $C_j - Z_j$ is -2M + 8 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 60 and its row index is 3. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 1.

Entering $= x_2$, Departing $= A_2$, Key Element = 1

 $R_3(\text{new}) = R_3(\text{old})$

 $R_1(\text{new}) = R_1(\text{old}) - R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old})$

Iteration-2		C_j	3	8	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	A ₁	MinRatio $\frac{X_B}{\overline{x_1}}$
A_1	М	140	1	0	0	1	1	$\frac{140}{1} = 140$
<i>S</i> ₁	0	80	(1)	0	1	0	0	$\frac{80}{1} = 80 \rightarrow$
x ₂	8	60	0	1	0	- 1	0	
Z = 480		Z_j	M	8	0	<i>M</i> - 8	М	
		$C_j - Z_j$	$-M+3$ \uparrow	0	0	- <i>M</i> +8	0	

Negative minimum $C_j - Z_j$ is -M + 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 80 and its row index is 2. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 1.

Entering $= x_1$, Departing $= S_1$, Key Element = 1

$$R_2(\text{new}) = R_2(\text{old})$$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

 $R_3(\text{new}) = R_3(\text{old})$

Iteration-3		C_{j}	3	8	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{S_2}}$
A ₁	М	60	0	0	- 1	(1)	1	$\frac{60}{1} = 60 \rightarrow$
<i>x</i> ₁	3	80	1	0	1	0	0	
<i>x</i> ₂	8	60	0	1	0	- 1	0	
<i>Z</i> = 720		Z_{j}	3	8	- <i>M</i> +3	<i>M</i> - 8	М	
		$C_j - Z_j$	0	0	<i>M</i> - 3	$-M+8$ \uparrow	0	

Negative minimum $C_j - Z_j$ is -M + 8 and its column index is 4. So, the entering variable is S_2 .

Minimum ratio is 60 and its row index is 1. So, the leaving basis variable is A_1 .

∴ The pivot element is 1.

Entering = S_2 , Departing = A_1 , Key Element = 1

 $R_1(\text{new}) = R_1(\text{old})$

 $R_2(\text{new}) = R_2(\text{old})$

 $R_3(\text{new}) = R_3(\text{old}) + R_1(\text{new})$

Iteration-4		C_j	3	8	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>S</i> ₂	0	60	0	0	- 1	1	
<i>x</i> ₁	3	80	1	0	1	0	
x ₂	8	120	0	1	- 1	0	
<i>Z</i> = 1200		Z_j	3	8	-5	0	
		C_j - Z_j	0	0	5	0	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 80, x_2 = 120$

Min Z = 1200

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + 2x2 + 3x3subject to $2x1 + x2 + x3 \le 2$ $3x1 + 4x2 + 2x3 \ge 8$ and $x1,x2,x3 \ge 0$

Solution: Problem is

 $Max Z = 3x_1 + 2x_2 + 3x_3$

subject to

 $2x_1 + x_2 + x_3 \le 2$ $3x_1 + 4x_2 + 2x_3 \ge 8$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1

After introducing slack, surplus, artificial variables

Max $Z = 3x_1 + 2x_2 + 3x_3 + 0S_1 + 0S_2 - MA_1$ subject to

 $2x_1 + x_2 + x_3 + S_1 = 2$ $3x_1 + 4x_2 + 2x_3 - S_2 + A_1 = 8$ and $x_1, x_2, x_3, S_1, S_2, A_1 \ge 0$

Iteration-1		C_{j}	3	2	3	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	2	2	1	1	1	0	0	$\frac{2}{1} = 2$
A_1	- <i>M</i>	8	3	(4)	2	0	- 1	1	$\frac{8}{4} = 2 \rightarrow$
Z = 0		Z_{j}	-3M	-4M	-2M	0	М	- <i>M</i>	
		C_j - Z_j	3 <i>M</i> +3	$4M+2$ \uparrow	2 <i>M</i> +3	0	- <i>M</i>	0	

BigM method

Positive maximum C_j - Z_j is 4M + 2 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 2 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 4.

Entering $= x_2$, Departing $= A_1$, Key Element = 4

 $R_2(\text{new}) = R_2(\text{old}) \div 4$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

Iteration-2		Cj	3	2	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_3}}$
<i>S</i> ₁	0	0	$\frac{5}{4}$	0	$\left(\frac{1}{2}\right)$	1	$\frac{1}{4}$	$\frac{0}{\frac{1}{2}} = 0 \longrightarrow$
<i>x</i> ₂	2	2	$\frac{3}{4}$	1	$\frac{1}{2}$	0	$-\frac{1}{4}$	$\frac{\frac{2}{1}}{\frac{1}{2}} = 4$
<i>Z</i> = 4		Z_j	$\frac{3}{2}$	2	1	0	$-\frac{1}{2}$	
		$C_j - Z_j$	$\frac{3}{2}$	0	2 ↑	0	$\frac{1}{2}$	

Positive maximum $C_j - Z_j$ is 2 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is 0 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is $\frac{1}{2}$.

Entering = x_3 , Departing = S_1 , Key Element = $\frac{1}{2}$

$$R_1(\text{new}) = R_1(\text{old}) \times 2$$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{2}R_1(\text{new})$$

Iteration-3		C_j	3	2	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	MinRatio

12/22/2017				BigM met	hod			
x ₃	3	0	$\frac{5}{2}$	0	1	2	$\frac{1}{2}$	
<i>x</i> ₂	2	2	$-\frac{1}{2}$	1	0	- 1	$-\frac{1}{2}$	
<i>Z</i> = 4		Z_j	$\frac{13}{2}$	2	3	4	$\frac{1}{2}$	
		C_j - Z_j	$-\frac{7}{2}$	0	0	-4	$-\frac{1}{2}$	

Since all $C_j - Z_j \leq 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 2, x_3 = 0$

Max Z = 4

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + 6x2subject to $x1 + x2 \le 20$ $4x1 + x2 \ge 20$ $x1 + x2 \ge 18$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 3x_1 + 6x_2$

subject to

 $x_{1} + x_{2} \le 20$ $4x_{1} + x_{2} \ge 20$ $x_{1} + x_{2} \ge 18$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_2

After introducing slack, surplus, artificial variables

Max $Z = 3x_1 + 6x_2 + 0S_1 + 0S_2 + 0S_3 - MA_1 - MA_2$ subject to

$x_1 + x_2 + S_1$			= 20
$4x_1 + x_2$	- S ₂	$+ A_{1}$	= 20
$x_1 + x_2$	-	<i>S</i> ₃ +	- $A_2 = 18$
and x_1, x_2, S_1, S_2 ,	S_{3}, A_{1}, A_{2}	$_2 \ge 0$	

Iteration-1		C_{j}	3	6	0	0	0	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	20	1	1	1	0	0	0	0	$\frac{20}{1} = 20$
A ₁	- M	20	(4)	1	0	- 1	0	1	0	$\frac{20}{4} = 5 \rightarrow$

12/22/2017	BigM method									
A ₂	- <i>M</i>	18	1	1	0	0	-1	0	1	$\frac{18}{1} = 18$
Z = 0		Z_{j}	-5M	-2M	0	М	М	- <i>M</i>	- <i>M</i>	
		$C_j - Z_j$	$5M+3$ \uparrow	2 <i>M</i> +6	0	- <i>M</i>	- <i>M</i>	0	0	

Positive maximum C_j - Z_j is 5M + 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 5 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 4.

Entering $= x_1$, Departing $= A_1$, Key Element = 4

 $R_2(\text{new}) = R_2(\text{old}) \div 4$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_2(\text{new})$

Iteration-2		C_j	3	6	0	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	15	0	$\frac{3}{4}$	1	$\frac{1}{4}$	0	0	$\frac{15}{\frac{3}{4}} = 20$
<i>x</i> ₁	3	5	1	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	0	$\frac{5}{\frac{1}{4}} = 20$
A ₂	- M	13	0	$\left(\frac{3}{4}\right)$	0	$\frac{1}{4}$	- 1	1	$\frac{\frac{13}{3}}{\frac{3}{4}} = \frac{52}{3} \rightarrow$
<i>Z</i> = 15		Z_j	3	$-\frac{3M}{4}+\frac{3}{4}$	0	$-\frac{M}{4}-\frac{3}{4}$	М	- <i>M</i>	
		$C_j - Z_j$	0	$\frac{3M}{4} + \frac{21}{4} \uparrow$	0	$\frac{M}{4} + \frac{3}{4}$	- <i>M</i>	0	

Positive maximum $C_j - Z_j$ is $\frac{3M}{4} + \frac{21}{4}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{52}{3}$ and its row index is 3. So, the leaving basis variable is A_2 .

 \therefore The pivot element is $\frac{3}{4}$.

Entering = x_2 , Departing = A_2 , Key Element = $\frac{3}{4}$

 $R_3(\text{new}) = R_3(\text{old}) \times \frac{4}{3}$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{3}{4}R_3(\text{new})$$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{1}{4}R_3(\text{new})$

Iteration-3		C_j	3	6	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_3}}$
<i>S</i> ₁	0	2	0	0	1	0	(1)	$\frac{2}{1} = 2 \rightarrow$
<i>x</i> ₁	3	$\frac{2}{3}$	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{\frac{2}{3}}{\frac{1}{3}} = 2$
<i>x</i> ₂	6	$\frac{52}{3}$	0	1	0	$\frac{1}{3}$	$-\frac{4}{3}$	
<i>Z</i> = 106		Z_{j}	3	6	0	1	-7	
		$C_j - Z_j$	0	0	0	- 1	7 ↑	

Positive maximum $C_j - Z_j$ is 7 and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 2 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 1.

Entering = S_3 , Departing = S_1 , Key Element = 1

 $R_1(\text{new}) = R_1(\text{old})$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{3}R_1(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) + \frac{4}{3}R_1(\text{new})$$

Iteration-4		C _j	3	6	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	<i>S</i> ₃	MinRatio
S ₃	0	2	0	0	1	0	1	
<i>x</i> ₁	3	0	1	0	$-\frac{1}{3}$	$-\frac{1}{3}$	0	
x ₂	6	20	0	1	$\frac{4}{3}$	$\frac{1}{3}$	0	
<i>Z</i> = 120		Z_j	3	6	7	1	0	
		$C_j - Z_j$	0	0	-7	- 1	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 20$

Max Z = 120

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + x2subject to 4x1 + x2 = 45x1 + 3x2 >= 73x1 + 2x2 <= 6and x1,x2 >= 0

Solution: Problem is

 $\operatorname{Max} Z = 3x_1 + x_2$

subject to

 $4x_{1} + x_{2} = 4$ $5x_{1} + 3x_{2} \ge 7$ $3x_{1} + 2x_{2} \le 6$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' = ' we should add artificial variable A_1
- 2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_2

After introducing slack, surplus, artificial variables

Max $Z = 3x_1 + x_2 + 0S_1 + 0S_2 - MA_1 - MA_2$ subject to

Iteration-1		C _j	3	1	0	0	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
A ₁	- <i>M</i>	4	(4)	1	0	0	1	0	$\frac{4}{4} = 1 \rightarrow$
A2	- <i>M</i>	7	5	3	-1	0	0	1	$\frac{7}{5} = \frac{7}{5}$

12/	22/2017	D17 BigM method										
	S ₁	0	6	3	2	0	1	0	0	$\frac{6}{3} = 2$		
	Z = 0		Z_{j}	-9M	-4M	M	0	- <i>M</i>	- <i>M</i>			
			$C_j - Z_j$	$9M+3$ \uparrow	4M + 1	- <i>M</i>	0	0	0			

Positive maximum C_j - Z_j is 9M + 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 1 and its row index is 1. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 4.

Entering $= x_1$, Departing $= A_1$, Key Element = 4

 $R_1(\text{new}) = R_1(\text{old}) \div 4$

 $R_2(\text{new}) = R_2(\text{old}) - 5R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - 3R_1(\text{new})$

Iteration-2		C_j	3	1	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>x</i> ₁	3	1	1	$\frac{1}{4}$	0	0	0	$\frac{\frac{1}{1}}{\frac{1}{4}} = 4$
A ₂	- <i>M</i>	2	0	$\left(\frac{7}{4}\right)$	- 1	0	1	$\frac{2}{\frac{7}{4}} = \frac{8}{7} \rightarrow$
S ₁	0	3	0	$\frac{5}{4}$	0	1	0	$\frac{\frac{3}{5}}{\frac{5}{4}} = \frac{12}{5}$
<i>Z</i> = 3		Z_j	3	$-\frac{7M}{4}+\frac{3}{4}$	М	0	- <i>M</i>	
		<i>C_j</i> - <i>Z_j</i>	0	$\frac{7M}{4} + \frac{1}{4} \uparrow$	- <i>M</i>	0	0	

Positive maximum $C_j - Z_j$ is $\frac{7M}{4} + \frac{1}{4}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{8}{7}$ and its row index is 2. So, the leaving basis variable is A_2 .

 \therefore The pivot element is $\frac{7}{4}$.

Entering = x_2 , Departing = A_2 , Key Element = $\frac{7}{4}$

$$R_2(\text{new}) = R_2(\text{old}) \times \frac{4}{7}$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{4}R_2(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) - \frac{5}{4}R_2(\text{new})$

Iteration-3		C_{j}	3	1	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{S_1}}$
<i>x</i> ₁	3	$\frac{5}{7}$	1	0	$\frac{1}{7}$	0	$\frac{\frac{5}{7}}{\frac{1}{7}} = 5$
<i>x</i> ₂	1	$\frac{8}{7}$	0	1	$-\frac{4}{7}$	0	
<i>S</i> ₁	0	$\frac{11}{7}$	0	0	$\left(\frac{5}{7}\right)$	1	$\frac{\frac{11}{7}}{\frac{5}{7}} = \frac{11}{5} \rightarrow$
$Z = \frac{23}{7}$		Z_{j}	3	1	$-\frac{1}{7}$	0	
		$C_j - Z_j$	0	0	$\frac{1}{7}$ \uparrow	0	

Positive maximum $C_j - Z_j$ is $\frac{1}{7}$ and its column index is 3. So, the entering variable is S_1 .

Minimum ratio is $\frac{11}{5}$ and its row index is 3. So, the leaving basis variable is S_1 .

$$\therefore$$
 The pivot element is $\frac{5}{7}$.

Entering =
$$S_1$$
, Departing = S_1 , Key Element = $\frac{5}{7}$

$$R_3(\text{new}) = R_3(\text{old}) \times \frac{7}{5}$$
$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{7}R_3(\text{new})$$

$$R_2(\text{new}) = R_2(\text{old}) + \frac{4}{7}R_3(\text{new})$$

Iteration-4		C_j	3	1	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>x</i> ₁	3	$\frac{2}{5}$	1	0	0	$-\frac{1}{5}$	
<i>x</i> ₂	1	$\frac{12}{5}$	0	1	0	$\frac{4}{5}$	
<i>S</i> ₁	0	$\frac{11}{5}$	0	0	1	$\frac{7}{5}$	
$Z = \frac{18}{5}$		Z_j	3	1	0	$\frac{1}{5}$	
		$C_j - Z_j$	0	0	0	$-\frac{1}{5}$	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as :

$$x_1 = \frac{2}{5}, x_2 = \frac{12}{5}$$

 $\operatorname{Max} Z = \frac{18}{5}$

BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 50x1 + 30x2subject to $3x1 + 2x2 \le 34$ $x1 + x2 \ge 12$ $3x1 + 2x2 \ge 18$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 50 x_1 + 30 x_2$

subject to

 $3x_{1} + 2x_{2} \le 34$ $x_{1} + x_{2} \ge 12$ $3x_{1} + 2x_{2} \ge 18$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_2

After introducing slack, surplus, artificial variables

Max $Z = 50x_1 + 30x_2 + 0S_1 + 0S_2 + 0S_3 - MA_1 - MA_2$ subject to

$3x_1 + 2x_2 + S_1$			= 34
$x_1 + x_2$	- S ₂	$+ A_{1}$	= 12
$3x_1 + 2x_2$	- <i>S</i>	+ +	$A_2 = 18$
and x_1, x_2, S_1, S_2, S_3	$A_3, A_1, A_2 \ge$	0	

Iteration-1		C_{j}	50	30	0	0	0	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	34	3	2	1	0	0	0	0	$\frac{34}{3} = \frac{34}{3}$
A ₁	- <i>M</i>	12	1	1	0	-1	0	1	0	$\frac{12}{1} = 12$

12/22/2017		BigM method									
A ₂	- <i>M</i>	18	(3)	2	0	0	- 1	0	1	$\frac{18}{3} = 6 \rightarrow$	
Z = 0		Z_{j}	- 4 <i>M</i>	-3M	0	М	М	- <i>M</i>	- <i>M</i>		
		$C_j - Z_j$	$4M + 50 \uparrow$	3 <i>M</i> + 30	0	- <i>M</i>	- <i>M</i>	0	0		

Positive maximum $C_j - Z_j$ is 4M + 50 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 6 and its row index is 3. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 3.

Entering $= x_1$, Departing $= A_2$, Key Element = 3

 $R_3(\text{new}) = R_3(\text{old}) \div 3$

 $R_1(\text{new}) = R_1(\text{old}) - 3R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - R_3(\text{new})$

Iteration-2		C_{j}	50	30	0	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{S_3}}$
<i>S</i> ₁	0	16	0	0	1	0	(1)	0	$\frac{16}{1} = 16 \rightarrow$
<i>A</i> ₁	- <i>M</i>	6	0	$\frac{1}{3}$	0	- 1	$\frac{1}{3}$	1	$\frac{6}{\frac{1}{3}} = 18$
<i>x</i> ₁	50	6	1	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	0	
<i>Z</i> = 300		Z_j	50	$-\frac{M}{3}+\frac{100}{3}$	0	М	$-\frac{M}{3}-\frac{50}{3}$	- <i>M</i>	
		$C_j - Z_j$	0	$\frac{M}{3} - \frac{10}{3}$	0	- <i>M</i>	$\frac{M}{3} + \frac{50}{3} \uparrow$	0	

Positive maximum $C_j - Z_j$ is $\frac{M}{3} + \frac{50}{3}$ and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 16 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 1.

Entering =
$$S_3$$
, Departing = S_1 , Key Element = 1

$$R_1(\text{new}) = R_1(\text{old})$$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{3}R_1(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) + \frac{1}{3}R_1(\text{new})$

Iteration-3		C_{j}	50	30	0	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
S ₃	0	16	0	0	1	0	1	0	
<i>A</i> ₁	- <i>M</i>	$\frac{2}{3}$	0	$\left(\frac{1}{3}\right)$	$-\frac{1}{3}$	- 1	0	1	$\frac{\frac{2}{3}}{\frac{1}{3}} = 2 \rightarrow$
<i>x</i> ₁	50	$\frac{34}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	0	$\frac{\frac{34}{3}}{\frac{2}{3}} = 17$
$Z = \frac{1700}{3}$		Z_j	50	$-\frac{M}{3}+\frac{100}{3}$	$\frac{M}{3} + \frac{50}{3}$	М	0	- <i>M</i>	
		$C_j - Z_j$	0	$\frac{M}{3} - \frac{10}{3} \uparrow$	$-\frac{M}{3}-\frac{50}{3}$	- <i>M</i>	0	0	

Positive maximum $C_j - Z_j$ is $\frac{M}{3} - \frac{10}{3}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 2 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is $\frac{1}{3}$.

Entering = x_2 , Departing = A_1 , Key Element = $\frac{1}{3}$

 $R_2(\text{new}) = R_2(\text{old}) \times 3$

 $R_1(\text{new}) = R_1(\text{old})$

$$R_3(\text{new}) = R_3(\text{old}) - \frac{2}{3}R_2(\text{new})$$

Iteration-4		C_j	50	30	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	S ₃	MinRatio
S ₃	0	16	0	0	1	0	1	
x ₂	30	2	0	1	- 1	-3	0	
x ₁	50	10	1	0	1	2	0	
Z = 560		Z_{j}	50	30	20	10	0	
		$C_j - Z_j$	0	0	-20	- 10	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 10, x_2 = 2$

Max Z = 560

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 2x1 + 10x2subject to $x1 + 2x2 \le 40$ $3x1 + x2 \ge 30$ $4x1 + 3x2 \ge 64$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 2x_1 + 10x_2$

subject to

 $x_{1} + 2x_{2} \le 40$ $3x_{1} + x_{2} \ge 30$ $4x_{1} + 3x_{2} \ge 64$ and $x_{1}, x_{2} \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_2

After introducing slack, surplus, artificial variables

 $Min Z = 2x_1 + 10x_2 + 0S_1 + 0S_2 + 0S_3 + MA_1 + MA_2$ subject to

$x_1 + 2x_2 + S$	\mathbf{S}_1		= 40
$3x_1 + x_2$	- S ₂	$+ A_{1}$	= 30
$4x_1 + 3x_2$	- S ₃	; +	$A_2 = 64$
and x_1, x_2, S_1, S_2 ,	$S_3, A_1, A_2 \ge$	0	

Iteration-1		C_{j}	2	10	0	0	0	M	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	40	1	2	1	0	0	0	0	$\frac{40}{1} = 40$
A ₁	M	30	(3)	1	0	- 1	0	1	0	$\frac{30}{3} = 10 \rightarrow$

12/22/2017		BigM method									
A ₂	M	64	4	3	0	0	-1	0	1	$\frac{64}{4} = 16$	
Z = 0		Z_{j}	7 <i>M</i>	4 <i>M</i>	0	- <i>M</i>	- <i>M</i>	M	M		
		$C_j - Z_j$	<i>-7M</i> +2 ↑	-4M + 10	0	М	М	0	0		

Negative minimum $C_j - Z_j$ is -7M + 2 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 10 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 3.

Entering $= x_1$, Departing $= A_1$, Key Element = 3

 $R_2(\text{new}) = R_2(\text{old}) \div 3$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

 $R_3(\text{new}) = R_3(\text{old})-4R_2(\text{new})$

Iteration-2		C_j	2	10	0	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃	A ₂	$ MinRatio \frac{X_B}{x_2} $
<i>S</i> ₁	0	30	0	$\frac{5}{3}$	1	$\frac{1}{3}$	0	0	$\frac{30}{\frac{5}{3}} = 18$
<i>x</i> ₁	2	10	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	0	$\frac{10}{\frac{1}{3}} = 30$
<i>A</i> ₂	М	24	0	$\left(\frac{5}{3}\right)$	0	$\frac{4}{3}$	- 1	1	$\frac{\frac{24}{5}}{\frac{5}{3}} = \frac{72}{5} \rightarrow$
<i>Z</i> = 20		Z_j	2	$\frac{5M}{3} + \frac{2}{3}$	0	$\frac{4M}{3} - \frac{2}{3}$	- <i>M</i>	М	
		$C_j - Z_j$	0	$-\frac{5M}{3}+\frac{28}{3} \uparrow$	0	$-\frac{4M}{3}+\frac{2}{3}$	М	0	

Negative minimum $C_j - Z_j$ is $-\frac{5M}{3} + \frac{28}{3}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{72}{5}$ and its row index is 3. So, the leaving basis variable is A_2 .

 \therefore The pivot element is $\frac{5}{3}$.

Entering = x_2 , Departing = A_2 , Key Element = $\frac{5}{3}$

 $R_3(\text{new}) = R_3(\text{old}) \times \frac{3}{5}$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{5}{3}R_3(\text{new})$$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{1}{3}R_3(\text{new})$

Iteration-3		C_j	2	10	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_2}}$
S_1	0	6	0	0	1	- 1	1	
<i>x</i> ₁	2	$\frac{26}{5}$	1	0	0	$-\frac{3}{5}$	$\frac{1}{5}$	
<i>x</i> ₂	10	$\frac{72}{5}$	0	1	0	$\left(\frac{4}{5}\right)$	$-\frac{3}{5}$	$\frac{\frac{72}{5}}{\frac{4}{5}} = 18 \rightarrow$
$Z = \frac{772}{5}$		Z_{j}	2	10	0	$\frac{34}{5}$	$-\frac{28}{5}$	
		$C_j - Z_j$	0	0	0	$-\frac{34}{5}$ \uparrow	$\frac{28}{5}$	

Negative minimum $C_j - Z_j$ is $-\frac{34}{5}$ and its column index is 4. So, the entering variable is S_2 .

Minimum ratio is 18 and its row index is 3. So, the leaving basis variable is x_2 .

 \therefore The pivot element is $\frac{4}{5}$.

Entering = S_2 , Departing = x_2 , Key Element = $\frac{4}{5}$

$$R_3(\text{new}) = R_3(\text{old}) \times \frac{5}{4}$$

 $R_1(\text{new}) = R_1(\text{old}) + R_3(\text{new})$

$$R_2(\text{new}) = R_2(\text{old}) + \frac{3}{5}R_3(\text{new})$$

Iteration-4		C_j	2	10	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
S ₁	0	24	0	$\frac{5}{4}$	1	0	$\frac{1}{4}$	
<i>x</i> ₁	2	16	1	$\frac{3}{4}$	0	0	$-\frac{1}{4}$	
<i>S</i> ₂	0	18	0	$\frac{5}{4}$	0	1	$-\frac{3}{4}$	
Z = 32		Z_j	2	$\frac{3}{2}$	0	0	$-\frac{1}{2}$	
		C_j - Z_j	0	$\frac{17}{2}$	0	0	$\frac{1}{2}$	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 16, x_2 = 0$

 $\operatorname{Min} Z = 32$

BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 3x1 + 2x2subject to $5x1 + x2 \ge 10$ $2x1 + 2x2 \ge 12$ $x1 + 4x2 \ge 12$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 3x_1 + 2x_2$

subject to

 $5x_{1} + x_{2} \ge 10$ $2x_{1} + 2x_{2} \ge 12$ $x_{1} + 4x_{2} \ge 12$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_3

After introducing surplus, artificial variables

Min Z = $3x_1 + 2x_2 + 0S_1 + 0S_2 + 0S_3 + MA_1 + MA_2 + MA_3$ subject to

$5x_1 + x_2$	- S ₁	$+ A_1$	= 10
$2x_1 + 2x_2$	- S ₂	$+ A_{2}$	= 12
$x_1 + 4x_2$	- S ₃		+ $A_3 = 12$
and x_1, x_2, S_1	$_{1}, S_{2}, S_{3}, A_{1}, A_{2}, A_{1}$	$_{3} \ge 0$	

Iteration-1		C_{j}	3	2	0	0	0	M	M	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>A</i> ₁	M	10	(5)	1	- 1	0	0	1	0	0	$\frac{10}{5} = 2 \rightarrow$
A ₂	M	12	2	2	0	- 1	0	0	1	0	$\frac{12}{2} = 6$

12/22/2017	I17 BigM method											
A ₃	M	12	1	4	0	0	- 1	0	0	1	$\frac{12}{1} = 12$	
Z = 0		Z_{j}	8 <i>M</i>	7 <i>M</i>	- <i>M</i>	- <i>M</i>	- <i>M</i>	M	M	M		
		$C_j - Z_j$	-8 <i>M</i> +3 ↑	-7 <i>M</i> +2	М	М	М	0	0	0		

Negative minimum $C_j - Z_j$ is -8M + 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 2 and its row index is 1. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 5.

Entering $= x_1$, Departing $= A_1$, Key Element = 5

 $R_1(\text{new}) = R_1(\text{old}) \div 5$

 $R_2(\text{new}) = R_2(\text{old}) - 2R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_1(\text{new})$

Iteration-2		C_j	3	2	0	0	0	М	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	A ₂	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>x</i> ₁	3	2	1	$\frac{1}{5}$	$-\frac{1}{5}$	0	0	0	0	$\frac{2}{\frac{1}{5}} = 10$
<i>A</i> ₂	М	8	0	$\frac{8}{5}$	$\frac{2}{5}$	- 1	0	1	0	$\frac{\frac{8}{8}}{\frac{8}{5}} = 5$
A ₃	М	10	0	$\left(\frac{19}{5}\right)$	$\frac{1}{5}$	0	- 1	0	1	$\frac{10}{\frac{19}{5}} = \frac{50}{19} \rightarrow$
Z = 6		Z_j	3	$\frac{27M}{5} + \frac{3}{5}$	$\frac{3M}{5} - \frac{3}{5}$	- <i>M</i>	- <i>M</i>	М	М	
		$C_j - Z_j$	0	$-\frac{27M}{5} + \frac{7}{5} \uparrow$	$-\frac{3M}{5} + \frac{3}{5}$	М	М	0	0	

Negative minimum $C_j - Z_j$ is $-\frac{27M}{5} + \frac{7}{5}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{50}{19}$ and its row index is 3. So, the leaving basis variable is A_3 .

 \therefore The pivot element is $\frac{19}{5}$.

Entering = x_2 , Departing = A_3 , Key Element = $\frac{19}{5}$

$$R_3(\text{new}) = R_3(\text{old}) \times \frac{5}{19}$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{5}R_3(\text{new})$$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{8}{5}R_3(\text{new})$

Iteration-3		C_{j}	3	2	0	0	0	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	<i>S</i> ₃	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{S_3}}$
<i>x</i> ₁	3	$\frac{28}{19}$	1	0	$-\frac{4}{19}$	0	$\frac{1}{19}$	0	$\frac{\frac{28}{19}}{\frac{1}{19}} = 28$
A ₂	М	$\frac{72}{19}$	0	0	$\frac{6}{19}$	- 1	$\left(\frac{8}{19}\right)$	1	$\frac{\frac{72}{19}}{\frac{8}{19}} = 9 \rightarrow$
<i>x</i> ₂	2	$\frac{50}{19}$	0	1	$\frac{1}{19}$	0	$-\frac{5}{19}$	0	
$Z = \frac{184}{19}$		Z_{j}	3	2	$\frac{6M}{19} - \frac{10}{19}$	- <i>M</i>	$\frac{8M}{19} - \frac{7}{19}$	М	
		$C_j - Z_j$	0	0	$-\frac{6M}{19}+\frac{10}{19}$	М	$-\frac{8M}{19}+\frac{7}{19} \uparrow$	0	

Negative minimum $C_j - Z_j$ is $-\frac{8M}{19} + \frac{7}{19}$ and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 9 and its row index is 2. So, the leaving basis variable is A_2 .

 $\therefore \text{ The pivot element is } \frac{8}{19}.$

Entering =
$$S_3$$
, Departing = A_2 , Key Element = $\frac{8}{19}$

$$R_2(\text{new}) = R_2(\text{old}) \times \frac{19}{8}$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{19}R_2(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) + \frac{5}{19}R_2(\text{new})$

Iteration-4		C_j	3	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
<i>x</i> ₁	3	1	1	0	$-\frac{1}{4}$	$\frac{1}{8}$	0	
S ₃	0	9	0	0	$\frac{3}{4}$	$-\frac{19}{8}$	1	
x ₂	2	5	0	1	$\frac{1}{4}$	$-\frac{5}{8}$	0	
Z = 13		Z_j	3	2	$-\frac{1}{4}$	$-\frac{7}{8}$	0	
		$C_j - Z_j$	0	0	$\frac{1}{4}$	$\frac{7}{8}$	0	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 1, x_2 = 5$

 $\operatorname{Min} Z = 13$

BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 5x1 + 3x2subject to $2x1 + 4x2 \le 12$ 2x1 + 2x2 = 10 $5x1 + 2x2 \ge 10$ and $x1,x2 \ge 0$

Solution: Problem is

Min $Z = 5x_1 + 3x_2$

subject to

 $2x_{1} + 4x_{2} \le 12$ $2x_{1} + 2x_{2} = 10$ $5x_{1} + 2x_{2} \ge 10$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' = ' we should add artificial variable A_1

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

After introducing slack, surplus, artificial variables

Min $Z = 5x_1 + 3x_2 + 0S_1 + 0S_2 + MA_1 + MA_2$ subject to

 $\begin{array}{lll} 2x_1 + 4x_2 + S_1 & = 12 \\ 2x_1 + 2x_2 & + A_1 & = 10 \\ 5x_1 + 2x_2 & - S_2 & + A_2 = 10 \\ \text{and } x_1, x_2, S_1, S_2, A_1, A_2 \geq 0 \end{array}$

Iteration-1		C_{j}	5	3	0	0	М	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	12	2	4	1	0	0	0	$\frac{12}{2} = 6$
A ₁	М	10	2	2	0	0	1	0	$\frac{10}{2} = 5$

12/22/2017				BigM method					
<i>A</i> ₂	М	10	(5)	2	0	- 1	0	1	$\frac{10}{5} = 2 \rightarrow$
Z = 0		Z_{j}	7 <i>M</i>	4 <i>M</i>	0	- <i>M</i>	М	М	
		$C_j - Z_j$	$-7M+5$ \uparrow	-4 <i>M</i> +3	0	М	0	0	

Negative minimum $C_j - Z_j$ is -7M + 5 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 2 and its row index is 3. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 5.

Entering $= x_1$, Departing $= A_2$, Key Element = 5

 $R_3(\text{new}) = R_3(\text{old}) \div 5$

 $R_1(\text{new}) = R_1(\text{old})-2R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old})-2R_3(\text{new})$

Iteration-2		C_j	5	3	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	8	0	$\left(\frac{16}{5}\right)$	1	$\frac{2}{5}$	0	$\frac{\frac{8}{16}}{\frac{5}{5}} = \frac{5}{2} \longrightarrow$
A_1	М	6	0	$\frac{6}{5}$	0	$\frac{2}{5}$	1	$\frac{\frac{6}{6}}{\frac{5}{5}} = 5$
<i>x</i> ₁	5	2	1	$\frac{2}{5}$	0	$-\frac{1}{5}$	0	$\frac{\frac{2}{2}}{\frac{2}{5}} = 5$
<i>Z</i> = 10		Z_j	5	$\frac{6M}{5} + 2$	0	$\frac{2M}{5} - 1$	М	
		$C_j - Z_j$	0	$-\frac{6M}{5}+1$ \uparrow	0	$-\frac{2M}{5}+1$	0	

Negative minimum $C_j - Z_j$ is $-\frac{6M}{5} + 1$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{5}{2}$ and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is $\frac{16}{5}$.

Entering = x_2 , Departing = S_1 , Key Element = $\frac{16}{5}$

$$R_1(\text{new}) = R_1(\text{old}) \times \frac{5}{16}$$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{6}{5}R_1(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) - \frac{2}{5}R_1(\text{new})$

Iteration-3		C_{j}	5	3	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{S_2}}$
<i>x</i> ₂	3	$\frac{5}{2}$	0	1	$\frac{5}{16}$	$\frac{1}{8}$	0	$\frac{\frac{5}{2}}{\frac{1}{8}} = 20$
<i>A</i> ₁	М	3	0	0	$-\frac{3}{8}$	$\left(\frac{1}{4}\right)$	1	$\frac{\frac{3}{1}}{\frac{1}{4}} = 12 \rightarrow$
<i>x</i> ₁	5	1	1	0	$-\frac{1}{8}$	$-\frac{1}{4}$	0	
$Z = \frac{25}{2}$		Z_{j}	5	3	$-\frac{3M}{8}+\frac{5}{16}$	$\frac{M}{4} - \frac{7}{8}$	М	
		$C_j - Z_j$	0	0	$\frac{3M}{8} - \frac{5}{16}$	$-\frac{M}{4}+\frac{7}{8}$ \uparrow	0	

Negative minimum $C_j - Z_j$ is $-\frac{M}{4} + \frac{7}{8}$ and its column index is 4. So, the entering variable is S_2 .

Minimum ratio is 12 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is $\frac{1}{4}$.

Entering =
$$S_2$$
, Departing = A_1 , Key Element = $\frac{1}{4}$

$$R_2(\text{new}) = R_2(\text{old}) \times 4$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{8}R_2(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) + \frac{1}{4}R_2(\text{new})$

Iteration-4		C_j	5	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>x</i> ₂	3	1	0	1	$\frac{1}{2}$	0	
<i>S</i> ₂	0	12	0	0	$-\frac{3}{2}$	1	
<i>x</i> ₁	5	4	1	0	$-\frac{1}{2}$	0	
Z = 23		Z_j	5	3	-1	0	
		C_j - Z_j	0	0	1	0	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 4, x_2 = 1$

 $\operatorname{Min} Z = 23$

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 8x1 + 6x2subject to $3x1 + 8x2 \le 96$ $2x1 + x2 \ge 10$ and $x1,x2 \ge 0$

Solution: Problem is

Min Z = $8x_1 + 6x_2$ subject to $3x_1 + 8x_2 \le 96$ $2x_1 + x_2 \ge 10$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1

After introducing slack, surplus, artificial variables

Min $Z = 8x_1 + 6x_2 + 0S_1 + 0S_2 + MA_1$ subject to

 $3x_1 + 8x_2 + S_1 = 96$ $2x_1 + x_2 - S_2 + A_1 = 10$ and $x_1, x_2, S_1, S_2, A_1 \ge 0$

Iteration-1		C_j	8	6	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	96	3	8	1	0	0	$\frac{96}{3} = 32$
<i>A</i> ₁	М	10	(2)	1	0	- 1	1	$\frac{10}{2} = 5 \rightarrow$
Z = 0		Z_j	2 <i>M</i>	М	0	- <i>M</i>	М	
		$C_j - Z_j$	$-2M+8$ \uparrow	- <i>M</i> +6	0	М	0	

BigM method

Negative minimum $C_j - Z_j$ is -2M + 8 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 5 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 2.

Entering $= x_1$, Departing $= A_1$, Key Element = 2

 $R_2(\text{new}) = R_2(\text{old}) \div 2$

 $R_1(\text{new}) = R_1(\text{old}) - 3R_2(\text{new})$

Iteration-2		Cj	8	6	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
S ₁	0	81	0	$\frac{13}{2}$	1	$\frac{3}{2}$	
<i>x</i> ₁	8	5	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	
Z = 40		Z_j	8	4	0	-4	
		C_j - Z_j	0	2	0	4	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 5, x_2 = 0$

 $\operatorname{Min} Z = 40$
Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 20x1 + 10x2subject to $x1 + 2x2 \le 40$ $3x1 + x2 \ge 30$ $4x1 + 3x2 \ge 60$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 20 x_1 + 10 x_2$

subject to

 $x_{1} + 2x_{2} \le 40$ $3x_{1} + x_{2} \ge 30$ $4x_{1} + 3x_{2} \ge 60$ and $x_{1}, x_{2} \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_2

After introducing slack, surplus, artificial variables

 $Min Z = 20x_1 + 10x_2 + 0S_1 + 0S_2 + 0S_3 + MA_1 + MA_2$ subject to

$x_1 + 2x_2 + S$	1		= 40
$3x_1 + x_2$	- S ₂	$+ A_{1}$	= 30
$4x_1 + 3x_2$	- S ₃	+	$A_2 = 60$
and x_1, x_2, S_1, S_2, J	$S_3, A_1, A_2 \ge 0$)	

Iteration-1		C_{j}	20	10	0	0	0	M	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	40	1	2	1	0	0	0	0	$\frac{40}{1} = 40$
A ₁	M	30	(3)	1	0	- 1	0	1	0	$\frac{30}{3} = 10 \rightarrow$

12/22/2017	BigM method										
A ₂	M	60	4	3	0	0	-1	0	1	$\frac{60}{4} = 15$	
Z = 0		Z _j	7 <i>M</i>	4 <i>M</i>	0	- <i>M</i>	- <i>M</i>	M	M		
		$C_j - Z_j$	-7 <i>M</i> +20 ↑	-4M + 10	0	М	М	0	0		

Negative minimum $C_j - Z_j$ is -7M + 20 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 10 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 3.

Entering $= x_1$, Departing $= A_1$, Key Element = 3

 $R_2(\text{new}) = R_2(\text{old}) \div 3$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

 $R_3(\text{new}) = R_3(\text{old})-4R_2(\text{new})$

Iteration-2		C_j	20	10	0	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	30	0	$\frac{5}{3}$	1	$\frac{1}{3}$	0	0	$\frac{30}{\frac{5}{3}} = 18$
<i>x</i> ₁	20	10	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	0	$\frac{10}{\frac{1}{3}} = 30$
<i>A</i> ₂	М	20	0	$\left(\frac{5}{3}\right)$	0	$\frac{4}{3}$	- 1	1	$\frac{20}{\frac{5}{3}} = 12 \rightarrow$
<i>Z</i> = 200		Z_j	20	$\frac{5M}{3} + \frac{20}{3}$	0	$\frac{4M}{3} - \frac{20}{3}$	- <i>M</i>	М	
		$C_j - Z_j$	0	$-\frac{5M}{3}+\frac{10}{3} \uparrow$	0	$-\frac{4M}{3} + \frac{20}{3}$	М	0	

Negative minimum $C_j - Z_j$ is $-\frac{5M}{3} + \frac{10}{3}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 12 and its row index is 3. So, the leaving basis variable is A_2 .

 $\therefore \text{ The pivot element is } \frac{5}{3}.$

Entering = x_2 , Departing = A_2 , Key Element = $\frac{5}{3}$

 $R_3(\text{new}) = R_3(\text{old}) \times \frac{3}{5}$

 $R_1(\text{new}) = R_1(\text{old}) - \frac{5}{3}R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{1}{3}R_3(\text{new})$

Iteration-3		C_j	20	10	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
<i>S</i> ₁	0	10	0	0	1	- 1	1	
<i>x</i> ₁	20	6	1	0	0	$-\frac{3}{5}$	$\frac{1}{5}$	
<i>x</i> ₂	10	12	0	1	0	$\frac{4}{5}$	$-\frac{3}{5}$	
<i>Z</i> = 240		Z_j	20	10	0	-4	-2	
		$C_j - Z_j$	0	0	0	4	2	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 6, x_2 = 12$

Min Z = 240

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 200x1 + 400x2subject to $x1 + x2 \ge 200$ $x1 + 3x2 \ge 100$ x1 + 3x2 <= 35and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 200 x_1 + 400 x_2$

subject to

 $x_{1} + x_{2} \ge 200$ $x_{1} + 3x_{2} \ge 100$ $x_{1} + 3x_{2} \le 35$ and $x_{1}, x_{2} \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack, surplus, artificial variables

 $Min Z = 200x_1 + 400x_2 + 0S_1 + 0S_2 + 0S_3 + MA_1 + MA_2$ subject to

$x_1 + x_2 - S_1$	+ A	= 200
$x_1 + 3x_2 - S$	\tilde{b}_2	+ $A_2 = 100$
$x_1 + 3x_2$	+ S ₃	= 35
and $x_1, x_2, S_1, S_2, S_3, I$	$A_1, A_2 \ge 0$	

Iteration-1		C _j	200	400	0	0	0	M	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
A ₁	М	200	1	1	- 1	0	0	1	0	$\frac{200}{1} = 200$
A ₂	M	100	1	3	0	- 1	0	0	1	$\frac{100}{3} = \frac{100}{3}$

12/22/2011

/22/2017		BigM method											
<i>S</i> ₁	0	35	1	(3)	0	0	1	0	0	$\frac{35}{3} = \frac{35}{3} \rightarrow$			
Z = 0		Z_{j}	2 <i>M</i>	4 <i>M</i>	- <i>M</i>	- <i>M</i>	0	M	M				
		$C_j - Z_j$	-2 <i>M</i> +200	-4 <i>M</i> +400 ↑	М	M	0	0	0				

Negative minimum $C_j - Z_j$ is -4M + 400 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{35}{3}$ and its row index is 3. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 3.

Entering $= x_2$, Departing $= S_1$, Key Element = 3

 $R_3(\text{new}) = R_3(\text{old}) \div 3$

 $R_1(\text{new}) = R_1(\text{old}) - R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - 3R_3(\text{new})$

Iteration-2		C_j	200	400	0	0	0	M	Μ	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	<i>A</i> ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
A_1	М	$\frac{565}{3}$	$\frac{2}{3}$	0	- 1	0	$-\frac{1}{3}$	1	0	$\frac{\frac{565}{3}}{\frac{2}{3}} = \frac{565}{2}$
<i>A</i> ₂	M	65	0	0	0	- 1	- 1	0	1	
<i>x</i> ₂	400	$\frac{35}{3}$	$\left(\frac{1}{3}\right)$	1	0	0	$\frac{1}{3}$	0	0	$\frac{\frac{35}{3}}{\frac{1}{3}} = 35 \rightarrow$
$Z = \frac{14000}{3}$		Z_{j}	$\frac{2M}{3} + \frac{400}{3}$	400	- <i>M</i>	- <i>M</i>	$-\frac{4M}{3}+\frac{400}{3}$	М	М	
		$C_j - Z_j$	$-\frac{2M}{3} + \frac{200}{3} \uparrow$	0	М	М	$\frac{4M}{3} - \frac{400}{3}$	0	0	

Negative minimum $C_j - Z_j$ is $-\frac{2M}{3} + \frac{200}{3}$ and its column index is 1. So, the entering variable is x_1 .

BigM method

Minimum ratio is 35 and its row index is 3. So, the leaving basis variable is x_2 .

 \therefore The pivot element is $\frac{1}{3}$.

Entering = x_1 , Departing = x_2 , Key Element = $\frac{1}{3}$

 $R_3(\text{new}) = R_3(\text{old}) \times 3$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{2}{3}R_3(\text{new})$$

 $R_2(\text{new}) = R_2(\text{old})$

Iteration-3		C_j	200	400	0	0	0	M	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	S ₃	<i>A</i> ₁	A ₂	MinRatio
A_1	М	165	0	-2	- 1	0	- 1	1	0	
A_2	M	65	0	0	0	- 1	- 1	0	1	
<i>x</i> ₁	200	35	1	3	0	0	1	0	0	
<i>Z</i> = 7000		Z_j	200	-2M + 600	- <i>M</i>	- <i>M</i>	-2M + 200	M	M	
		$C_j - Z_j$	0	2 <i>M</i> - 200	M	М	2 <i>M</i> - 200	0	0	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 35, x_2 = 0$

Min Z = 7000

But this solution is not feasible because the final solution violates the 1^{st} constraint $x_1 + x_2 \ge 200$.

and the artificial variable A_1 appears in the basis with positive value 165

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 600x1 + 400x2subject to $15x1 + 15x2 \ge 200$ $3x1 + x2 \ge 40$ $2x1 + 5x2 \ge 44$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = 600 x_1 + 400 x_2$

subject to

 $15 x_1 + 15 x_2 \ge 200$ 3 $x_1 + x_2 \ge 40$ 2 $x_1 + 5 x_2 \ge 44$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_3

After introducing surplus, artificial variables

 $Min Z = 600 x_1 + 400 x_2 + 0 S_1 + 0 S_2 + 0 S_3 + M A_1 + M A_2 + M A_3$ subject to

Iteration-1		C _j	600	400	0	0	0	M	М	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
A ₁	М	200	15	15	- 1	0	0	1	0	0	$\frac{200}{15} = \frac{40}{3}$
A ₂	M	40	3	1	0	-1	0	0	1	0	$\frac{40}{1} = 40$

12/22/2017				BigM	l method						
A ₃	М	44	2	(5)	0	0	- 1	0	0	1	$\frac{44}{5} = \frac{44}{5} \rightarrow$
Z = 0		Z_{j}	20 <i>M</i>	21 <i>M</i>	- <i>M</i>	- <i>M</i>	- <i>M</i>	M	M	M	
		$C_j - Z_j$	-20 <i>M</i> +600	-21 <i>M</i> + 400 ↑	М	М	М	0	0	0	

Negative minimum $C_j - Z_j$ is -21M + 400 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{44}{5}$ and its row index is 3. So, the leaving basis variable is A_3 .

 \therefore The pivot element is 5.

Entering = x_2 , Departing = A_3 , Key Element = 5

 $R_3(\text{new}) = R_3(\text{old}) \div 5$

 $R_1(\text{new}) = R_1(\text{old}) - 15R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - R_3(\text{new})$

Iteration-2		C_j	600	400	0	0	0	М	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>A</i> ₁	М	68	(9)	0	- 1	0	3	1	0	$\frac{68}{9} = \frac{68}{9} \rightarrow$
<i>A</i> ₂	М	$\frac{156}{5}$	$\frac{13}{5}$	0	0	- 1	$\frac{1}{5}$	0	1	$\frac{\frac{156}{5}}{\frac{13}{5}} = 12$
<i>x</i> ₂	400	$\frac{44}{5}$	$\frac{2}{5}$	1	0	0	$-\frac{1}{5}$	0	0	$\frac{\frac{44}{5}}{\frac{2}{5}} = 22$
<i>Z</i> = 3520		Z_j	$\frac{58M}{5} + 160$	400	- <i>M</i>	- <i>M</i>	$\frac{16M}{5} - 80$	М	М	
		$C_j - Z_j$	$-\frac{58M}{5} + 440 \uparrow$	0	М	М	$-\frac{16M}{5} + 80$	0	0	

Negative minimum $C_j - Z_j$ is $-\frac{58M}{5} + 440$ and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is $\frac{68}{9}$ and its row index is 1. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 9.

Entering $= x_1$, Departing $= A_1$, Key Element = 9

 $R_1(\text{new}) = R_1(\text{old}) \div 9$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{13}{5}R_1(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) - \frac{2}{5}R_1(\text{new})$$

Iteration-3		C_j	600	400	0	0	0	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{S_1}}$
<i>x</i> ₁	600	$\frac{68}{9}$	1	0	$-\frac{1}{9}$	0	$\frac{1}{3}$	0	
A ₂	М	$\frac{104}{9}$	0	0	$\left(\frac{13}{45}\right)$	- 1	$-\frac{2}{3}$	1	$\frac{\frac{104}{9}}{\frac{13}{45}} = 40 \rightarrow$
<i>x</i> ₂	400	$\frac{52}{9}$	0	1	$\frac{2}{45}$	0	$-\frac{1}{3}$	0	$\frac{\frac{52}{9}}{\frac{2}{45}} = 130$
$Z = \frac{61600}{9}$		Z_{j}	600	400	$\frac{13M}{45} - \frac{440}{9}$	- <i>M</i>	$-\frac{2M}{3}+\frac{200}{3}$	М	
		$C_j - Z_j$	0	0	$-\frac{13M}{45} + \frac{440}{9} \uparrow$	М	$\frac{2M}{3} - \frac{200}{3}$	0	

Negative minimum $C_j - Z_j$ is $-\frac{13M}{45} + \frac{440}{9}$ and its column index is 3. So, the entering variable is S_1 .

Minimum ratio is 40 and its row index is 2. So, the leaving basis variable is A_2 .

 $\therefore \text{ The pivot element is } \frac{13}{45}.$

Entering =
$$S_1$$
, Departing = A_2 , Key Element = $\frac{13}{45}$

$$R_2(\text{new}) = R_2(\text{old}) \times \frac{45}{13}$$

$$R_1(\text{new}) = R_1(\text{old}) + \frac{1}{9}R_2(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) - \frac{2}{45}R_2(\text{new})$

Iteration-4		C_j	600	400	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	S ₂	<i>S</i> ₃	MinRatio
<i>x</i> ₁	600	12	1	0	0	$-\frac{5}{13}$	$\frac{1}{13}$	
S ₁	0	40	0	0	1	$-\frac{45}{13}$	$-\frac{30}{13}$	
<i>x</i> ₂	400	4	0	1	0	$\frac{2}{13}$	$-\frac{3}{13}$	
Z = 8800		Z_j	600	400	0	$-\frac{2200}{13}$	$-\frac{600}{13}$	
		$C_j - Z_j$	0	0	0	$\frac{2200}{13}$	$\frac{600}{13}$	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 12, x_2 = 4$

Min Z = 8800

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 600x1 + 500x2subject to $2x1 + x2 \ge 80$ $x1 + 2x2 \ge 60$ and $x1,x2 \ge 0$

Solution: Problem is

Min Z = $600 x_1 + 500 x_2$ subject to $2 x_1 + x_2 \ge 80$ $x_1 + 2 x_2 \ge 60$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

After introducing surplus, artificial variables

 $Min Z = 600 x_1 + 500 x_2 + 0 S_1 + 0 S_2 + M A_1 + M A_2$

subject to

 $2x_1 + x_2 - S_1 + A_1 = 80$ $x_1 + 2x_2 - S_2 + A_2 = 60$ and $x_1, x_2, S_1, S_2, A_1, A_2 \ge 0$

Iteration-1		C_j	600	500	0	0	М	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
A_1	М	80	2	1	- 1	0	1	0	$\frac{80}{1} = 80$
<i>A</i> ₂	М	60	1	(2)	0	- 1	0	1	$\frac{60}{2} = 30 \rightarrow$
Z = 0		Z_j	3М	3М	- <i>M</i>	- <i>M</i>	М	М	
		$C_j - Z_j$	-3M + 600	$-3M + 500 \uparrow$	М	М	0	0	

BigM method

Negative minimum $C_j - Z_j$ is -3M + 500 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 30 and its row index is 2. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 2.

Entering $= x_2$, Departing $= A_2$, Key Element = 2

 $R_2(\text{new}) = R_2(\text{old}) \div 2$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

Iteration-2		C_{j}	600	500	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>A</i> ₁	М	50	$\left(\frac{3}{2}\right)$	0	- 1	$\frac{1}{2}$	1	$\frac{50}{\frac{3}{2}} = \frac{100}{3} \rightarrow$
<i>x</i> ₂	500	30	$\frac{1}{2}$	1	0	$-\frac{1}{2}$	0	$\frac{30}{\frac{1}{2}} = 60$
<i>Z</i> = 15000		Z_j	$\frac{3M}{2} + 250$	500	- <i>M</i>	$\frac{M}{2} - 250$	М	
		$C_j - Z_j$	$-\frac{3M}{2}+350$ \uparrow	0	М	$-\frac{M}{2} + 250$	0	

Negative minimum $C_j - Z_j$ is $-\frac{3M}{2} + 350$ and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is $\frac{100}{3}$ and its row index is 1. So, the leaving basis variable is A_1 .

 C_i

 \therefore The pivot element is $\frac{3}{2}$.

Entering = x_1 , Departing = A_1 , Key Element = $\frac{3}{2}$

$$R_1(\text{new}) = R_1(\text{old}) \times \frac{2}{3}$$

Iteration-3

	1
$R_2(\text{new}) = R$	$_2(\text{old}) - \frac{1}{2}R_1(\text{new})$

1	
about:blank	

600

0

0

В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>x</i> ₁	600	$\frac{100}{3}$	1	0	$-\frac{2}{3}$	$\frac{1}{3}$	
<i>x</i> ₂	500	$\frac{40}{3}$	0	1	$\frac{1}{3}$	$-\frac{2}{3}$	
$Z = \frac{80000}{3}$		Z_j	600	500	$-\frac{700}{3}$	$-\frac{400}{3}$	
		$C_j - Z_j$	0	0	$\frac{700}{3}$	$\frac{400}{3}$	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = \frac{100}{3}, x_2 = \frac{40}{3}$

 $\operatorname{Min} Z = \frac{80000}{3}$

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = x1 + x2subject to $2x1 + x2 \ge 4$ $x1 + 7x2 \ge 7$ and $x1,x2 \ge 0$

Solution: Problem is

 $Min Z = x_1 + x_2$ subject to $2x_1 + x_2 \ge 4$ $x_1 + 7x_2 \ge 7$

and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

After introducing surplus, artificial variables

Min $Z = x_1 + x_2 + 0S_1 + 0S_2 + MA_1 + MA_2$ subject to

Iteration-1		C_{j}	1	1	0	0	М	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
A_1	М	4	2	1	- 1	0	1	0	$\frac{4}{1} = 4$
A ₂	М	7	1	(7)	0	- 1	0	1	$\frac{7}{7} = 1 \rightarrow$
Z = 0		Z_j	3 <i>M</i>	8 <i>M</i>	- <i>M</i>	- <i>M</i>	М	М	
		$C_j - Z_j$	-3M + 1	-8 <i>M</i> + 1 ↑	М	М	0	0	

BigM method

Negative minimum $C_j - Z_j$ is -8M + 1 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 1 and its row index is 2. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 7.

Entering $= x_2$, Departing $= A_2$, Key Element = 7

 $R_2(\text{new}) = R_2(\text{old}) \div 7$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

Iteration-2		C_j	1	1	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>A</i> ₁	М	3	$\left(\frac{13}{7}\right)$	0	- 1	$\frac{1}{7}$	1	$\frac{3}{\frac{13}{7}} = \frac{21}{13} \rightarrow$
<i>x</i> ₂	1	1	$\frac{1}{7}$	1	0	$-\frac{1}{7}$	0	$\frac{\frac{1}{1}}{\frac{1}{7}} = 7$
<i>Z</i> = 1		Z_j	$\frac{13M}{7} + \frac{1}{7}$	1	- <i>M</i>	$\frac{M}{7} - \frac{1}{7}$	М	
		$C_j - Z_j$	$-\frac{13M}{7} + \frac{6}{7} \uparrow$	0	М	$-\frac{M}{7}+\frac{1}{7}$	0	

0

0

Negative minimum $C_j - Z_j$ is $-\frac{13M}{7} + \frac{6}{7}$ and its column index is 1. So, the entering variable is x_1 .

 C_i

1

1

Minimum ratio is $\frac{21}{13}$ and its row index is 1. So, the leaving basis variable is A_1 .

 $\therefore \text{ The pivot element is } \frac{13}{7}.$

Entering = x_1 , Departing = A_1 , Key Element = $\frac{13}{7}$

$$R_1(\text{new}) = R_1(\text{old}) \times \frac{7}{13}$$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{1}{7}R_1(\text{new})$

Iteration-3

В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>x</i> ₁	1	$\frac{21}{13}$	1	0	$-\frac{7}{13}$	$\frac{1}{13}$	
x ₂	1	$\frac{10}{13}$	0	1	$\frac{1}{13}$	$-\frac{2}{13}$	
$Z = \frac{31}{13}$		Z_j	1	1	$-\frac{6}{13}$	$-\frac{1}{13}$	
		C_j - Z_j	0	0	$\frac{6}{13}$	$\frac{1}{13}$	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = \frac{21}{13}, x_2 = \frac{10}{13}$

 $\operatorname{Min} Z = \frac{31}{13}$

BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + 2x2subject to $5x1 + x2 \ge 10$ $2x1 + 2x2 \ge 12$ $x1 + 4x2 \ge 12$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 3x_1 + 2x_2$

subject to

 $5x_{1} + x_{2} \ge 10$ $2x_{1} + 2x_{2} \ge 12$ $x_{1} + 4x_{2} \ge 12$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_3

After introducing surplus, artificial variables

Max $Z = 3x_1 + 2x_2 + 0S_1 + 0S_2 + 0S_3 - MA_1 - MA_2 - MA_3$ subject to

$5x_1 + x_2$	- S ₁	$+ A_1$	= 10
$2x_1 + 2x_2$	- S ₂	$+ A_{2}$	= 12
$x_1 + 4x_2$	- S ₃		+ $A_3 = 12$
and x_1, x_2, S_1	$, S_2, S_3, A_1, A_2, A_1$	$_{3} \ge 0$	

Iteration-1		C_{j}	3	2	0	0	0	- <i>M</i>	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>A</i> ₁	- <i>M</i>	10	(5)	1	- 1	0	0	1	0	0	$\frac{10}{5} = 2 \rightarrow$
A ₂	- <i>M</i>	12	2	2	0	- 1	0	0	1	0	$\frac{12}{2} = 6$

12/22/2017					BigM m	BigM method							
A ₃	- <i>M</i>	12	1	4	0	0	-1	0	0	1	$\frac{12}{1} = 12$		
Z = 0		Z _j	-8M	-7M	M	M	M	- <i>M</i>	- <i>M</i>	- <i>M</i>			
		$C_j - Z_j$	8 <i>M</i> +3 ↑	7 <i>M</i> + 2	- <i>M</i>	- <i>M</i>	- <i>M</i>	0	0	0			

Positive maximum C_j - Z_j is 8M + 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 2 and its row index is 1. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 5.

Entering $= x_1$, Departing $= A_1$, Key Element = 5

 $R_1(\text{new}) = R_1(\text{old}) \div 5$

 $R_2(\text{new}) = R_2(\text{old}) - 2R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_1(\text{new})$

Iteration-2		C_j	3	2	0	0	0	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₂	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>x</i> ₁	3	2	1	0.2	- 0.2	0	0	0	0	$\frac{2}{0.2} = 10$
A_2	- <i>M</i>	8	0	1.6	0.4	- 1	0	1	0	$\frac{8}{1.6} = 5$
A_3	- <i>M</i>	10	0	(3.8)	0.2	0	- 1	0	1	$\frac{10}{3.8} = 2.6316 \rightarrow$
<i>Z</i> = 6		Z_{j}	3	$-\frac{27M}{5}+0.6$	$-\frac{3M}{5}-0.6$	М	М	- <i>M</i>	- <i>M</i>	
		$C_j - Z_j$	0	$\frac{27M}{5} + 1.4 \uparrow$	$\frac{3M}{5} + 0.6$	- <i>M</i>	- <i>M</i>	0	0	

Positive maximum $C_j - Z_j$ is $\frac{27M}{5} + 1.4$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 2.6316 and its row index is 3. So, the leaving basis variable is A_3 .

 \therefore The pivot element is 3.8.

Entering = x_2 , Departing = A_3 , Key Element = 3.8

 $R_3(\text{new}) = R_3(\text{old}) \times 0.2632$

 $R_1(\text{new}) = R_1(\text{old}) - 0.2R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - 1.6R_3(\text{new})$

Iteration-3		C_{j}	3	2	0	0 0		- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{S_3}}$
<i>x</i> ₁	3	1.4737	1	0	-0.2105	0 0.0526		0	$\frac{1.4737}{0.0526} = 28$
A ₂	- <i>M</i>	3.7895	0	0	0.3158	- 1	-1 (0.4211)		$\frac{3.7895}{0.4211} = 9 \rightarrow$
<i>x</i> ₂	2	2.6316	0	1	0.0526	0	-0.2632	0	
<i>Z</i> = 9.6842		Z_j	3	2	$-\frac{6M}{19} - 0.5263$	$M = -\frac{8M}{19} = 0.3684$		- <i>M</i>	
		$C_j - Z_j$	0	0	$\frac{6M}{19} + 0.5263$	$-M \qquad \frac{8M}{19} + 0.3684 \uparrow$		0	

Positive maximum $C_j - Z_j$ is $\frac{8M}{19} + 0.3684$ and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 9 and its row index is 2. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 0.4211.

Entering = S_3 , Departing = A_2 , Key Element = 0.4211

 $R_2(\text{new}) = R_2(\text{old}) \times 2.375$

$$R_1(\text{new}) = R_1(\text{old}) - 0.0526R_2(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) + 0.2632R_2(\text{new})$$

Iteration-4		C_{j}	3	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_2}}$
<i>x</i> ₁	3	1	1	0	-0.25	(0.125)	0	

12/22/2017	1/2017 BigM method											
								$\frac{1}{0.125} = 8 \longrightarrow$				
S ₃	0	9	0	0	0.75	-2.375	1					
<i>x</i> ₂	2	5	0	1	0.25	-0.625	0					
<i>Z</i> = 13		Z_j	3	2	-0.25	-0.875	0					
		$C_j - Z_j$	0	0	0.25	0.875 ↑	0					

Positive maximum $C_j - Z_j$ is 0.875 and its column index is 4. So, the entering variable is S_2 .

Minimum ratio is 8 and its row index is 1. So, the leaving basis variable is x_1 .

 \therefore The pivot element is 0.125.

Entering = S_2 , Departing = x_1 , Key Element = 0.125

 $R_1(\text{new}) = R_1(\text{old}) \times 8$

 $R_2(\text{new}) = R_2(\text{old}) + 2.375R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) + 0.625R_1(\text{new})$

Iteration-5		C_j	3	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_1}}$
S ₂	0	8	8	0	(- 2)	1	0	
<i>S</i> ₃	0	28	19	0	-4	0	1	
<i>x</i> ₂	2	10	5	1	- 1	0	0	
<i>Z</i> = 20		Z_{j}	10	2	-2	0	0	
		$C_j - Z_j$	-7	0	2 ↑	0	0	

Variable S_1 should enter into the basis, but all the coefficients in the S_1 column are negative or zero. So S_1 can not be entered into the basis.

Hence, the solution to the given problem is unbounded.

BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 2x1 + 4x2subject to $5x1 + 4x2 \le 200$ $3x1 + 5x2 \le 150$ $5x1 + 4x2 \ge 100$ 8x1 + 4x2 >= 80and x1,x2 >= 0 Solution: **Problem** is Max $Z = 2x_1 + 4x_2$ subject to $5x_1 + 4x_2 \le 200$ $3x_1 + 5x_2 \le 150$ $5x_1 + 4x_2 \ge 100$ $8x_1 + 4x_2 \ge 80$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_1

4. As the constraint 4 is of type ' \geq ' we should subtract surplus variable S_4 and add artificial variable A_2

After introducing slack, surplus, artificial variables

Max $Z = 2x_1 + 4x_2 + 0S_1 + 0S_2 + 0S_3 + 0S_4 - MA_1 - MA_2$ subject to

$5x_1 + 4x_2 +$	S_1			= 200
$3x_1 + 5x_2$	+ S_2			= 150
$5x_1 + 4x_2$		- <i>S</i> ₃	$+ A_{1}$	= 100
$8x_1 + 4x_2$		- S2	4 -	+ $A_2 = 80$
and w w C C	C C 1	1 > 0		

and	<i>x</i> ₁ ,	<i>x</i> ₂ ,	$S_{1},$	$S_{2}, $	S ₃ ,	S_4, Z_4	4 ₁ , A	$1_2 \ge$	0
-----	-------------------------	-------------------------	----------	-----------	------------------	------------	--------------------	-----------	---

Iteration-1		C_j	2	4	0	0	0	0	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	<i>S</i> ₄	<i>A</i> ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$

12/22/2017				I	BigM m	ethod					
<i>S</i> ₁	0	200	5	4	1	0	0	0	0	0	$\frac{200}{5} = 40$
S ₂	0	150	3	5	0	1	0	0	0	0	$\frac{150}{3} = 50$
A ₁	- <i>M</i>	100	5	4	0	0	- 1	0	1	0	$\frac{100}{5} = 20$
<i>A</i> ₂	- <i>M</i>	80	(8)	4	0	0	0	- 1	0	1	$\frac{80}{8} = 10 \rightarrow$
Z = 0		Z_j	-13M	- 8M	0	0	М	М	- <i>M</i>	- <i>M</i>	
		$C_j - Z_j$	$13M+2$ \uparrow	8 <i>M</i> + 4	0	0	- <i>M</i>	- <i>M</i>	0	0	

Positive maximum $C_j - Z_j$ is 13M + 2 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 10 and its row index is 4. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 8.

Entering $= x_1$, Departing $= A_2$, Key Element = 8

 $R_4(\text{new}) = R_4(\text{old}) \div 8$

 $R_1(\text{new}) = R_1(\text{old}) - 5R_4(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - 3R_4(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - 5R_4(\text{new})$

Iteration-2		C_{j}	2	4	0	0	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	<i>S</i> ₄	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	150	0	$\frac{3}{2}$	1	0	0	$\frac{5}{8}$	0	$\frac{150}{\frac{3}{2}} = 100$
<i>S</i> ₂	0	120	0	$\frac{7}{2}$	0	1	0	$\frac{3}{8}$	0	$\frac{\frac{120}{7}}{\frac{7}{2}} = \frac{240}{7}$
<i>A</i> ₁	- <i>M</i>	50	0	$\frac{3}{2}$	0	0	- 1	$\frac{5}{8}$	1	$\frac{50}{\frac{3}{2}} = \frac{100}{3}$
	2	10	1		0	0	0		0	

12/22/2017	BigM method									
<i>x</i> ₁			$\left(\frac{1}{2}\right)$				$-\frac{1}{8}$		$\frac{10}{\frac{1}{2}} = 20 \rightarrow$	
<i>Z</i> = 20	Z_j	2	$-\frac{3M}{2}+1$	0	0	М	$-\frac{5M}{8}-\frac{1}{4}$	- <i>M</i>		
	$C_j - Z_j$	0	$\frac{3M}{2} + 3 \uparrow$	0	0	- <i>M</i>	$\frac{5M}{8} + \frac{1}{4}$	0		

Positive maximum $C_j - Z_j$ is $\frac{3M}{2} + 3$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 20 and its row index is 4. So, the leaving basis variable is x_1 .

 \therefore The pivot element is $\frac{1}{2}$.

Entering = x_2 , Departing = x_1 , Key Element = $\frac{1}{2}$

 $R_4(\text{new}) = R_4(\text{old}) \times 2$

 $R_1(\text{new}) = R_1(\text{old}) - \frac{3}{2}R_4(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{7}{2}R_4(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - \frac{3}{2}R_4(\text{new})$

Iteration-3		C_{j}	2	4	0	0	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{S_4}}$
<i>S</i> ₁	0	120	-3	0	1	0	0	1	0	$\frac{120}{1} = 120$
<i>S</i> ₂	0	50	-7	0	0	1	0	$\frac{5}{4}$	0	$\frac{50}{\frac{5}{4}} = 40$
<i>A</i> ₁	- <i>M</i>	20	-3	0	0	0	- 1	(1)	1	$\frac{20}{1} = 20 \rightarrow$
<i>x</i> ₂	4	20	2	1	0	0	0	- 1/4	0	

12/22/2017	7
------------	---

BigM method $\begin{array}{c|c} Z_j & 3M+8 \\ \hline C_j - Z_j & -3M-6 \end{array}$ Z = 800 -*M* 0 М -*M* - 1 4 0 0 0 0 -*M* $M+1\uparrow$

Positive maximum $C_j - Z_j$ is M + 1 and its column index is 6. So, the entering variable is S_4 .

Minimum ratio is 20 and its row index is 3. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 1.

Entering = S_4 , Departing = A_1 , Key Element = 1

 $R_3(\text{new}) = R_3(\text{old})$

 $R_1(\text{new}) = R_1(\text{old}) - R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - \frac{5}{4}R_3(\text{new})$

 $R_4(\text{new}) = R_4(\text{old}) + \frac{1}{4}R_3(\text{new})$

Iteration-4		C_j	2	4	0	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	<i>S</i> ₄	$\frac{\text{MinRatio}}{\frac{X_B}{S_3}}$
S ₁	0	100	0	0	1	0	1	0	$\frac{100}{1} = 100$
<i>S</i> ₂	0	25	$-\frac{13}{4}$	0	0	1	$\left(\frac{5}{4}\right)$	0	$\frac{25}{\frac{5}{4}} = 20 \rightarrow$
<i>S</i> ₄	0	20	-3	0	0	0	- 1	1	
<i>x</i> ₂	4	25	$\frac{5}{4}$	1	0	0	$-\frac{1}{4}$	0	
<i>Z</i> = 100		Z_j	5	4	0	0	-1	0	
		C_j - Z_j	-3	0	0	0	1 ↑	0	

Positive maximum $C_j - Z_j$ is 1 and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 20 and its row index is 2. So, the leaving basis variable is S_2 .

$$\therefore$$
 The pivot element is $\frac{5}{4}$

Entering =
$$S_3$$
, Departing = S_2 , Key Element = $\frac{5}{4}$

$$R_2(\text{new}) = R_2(\text{old}) \times \frac{4}{5}$$
$$R_1(\text{new}) = R_1(\text{old}) \cdot R_2(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) + R_2(\text{new})$

 $R_4(\text{new}) = R_4(\text{old}) + \frac{1}{4}R_2(\text{new})$

Iteration-5		C_j	2	4	0	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	<i>S</i> ₄	MinRatio
S ₁	0	80	$\frac{13}{5}$	0	1	$-\frac{4}{5}$	0	0	
S ₃	0	20	$-\frac{13}{5}$	0	0	$\frac{4}{5}$	1	0	
S ₄	0	40	$-\frac{28}{5}$	0	0	$\frac{4}{5}$	0	1	
<i>x</i> ₂	4	30	$\frac{3}{5}$	1	0	$\frac{1}{5}$	0	0	
<i>Z</i> = 120		Z_j	$\frac{12}{5}$	4	0	$\frac{4}{5}$	0	0	
		C_j - Z_j	$-\frac{2}{5}$	0	0	$-\frac{4}{5}$	0	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 30$

Max Z = 120

BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + 2x2 + 3x3 - x4subject to x1 + 2x2 + 3x3 = 152x1 + x2 + 5x3 = 20x1 + 2x2 + x3 + x4 = 10and $x1,x2,x3,x4 \ge 0$

Solution: Problem is

 $Max Z = 3x_1 + 2x_2 + 3x_3 - x_4$

subject to

 $x_{1} + 2x_{2} + 3x_{3} = 15$ $2x_{1} + x_{2} + 5x_{3} = 20$ $x_{1} + 2x_{2} + x_{3} + x_{4} = 10$ and $x_{1}, x_{2}, x_{3}, x_{4} \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' = ' we should add artificial variable A_1

2. As the constraint 2 is of type ' = ' we should add artificial variable A_2

3. As the constraint 3 is of type ' = ' we should add artificial variable A_3

After introducing artificial variables

Max $Z = 3x_1 + 2x_2 + 3x_3 - x_4 - MA_1 - MA_2 - MA_3$ subject to

Iteration-1		C_{j}	3	2	3	- 1	- <i>M</i>	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	A ₁	A ₂	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_3}}$
A ₁	- <i>M</i>	15	1	2	3	0	1	0	0	$\frac{15}{3} = 5$
A ₂	- <i>M</i>	20	2	1	(5)	0	0	1	0	$\frac{20}{5} = 4 \rightarrow$

12/22/2011					Digiti method					
A ₃	- <i>M</i>	10	1	2	1	1	0	0	1	$\frac{10}{1} = 10$
Z = 0		Z_{j}	-4M	-5M	-9M	- <i>M</i>	- <i>M</i>	- <i>M</i>	- <i>M</i>	
		$C_j - Z_j$	4 <i>M</i> + 3	5 <i>M</i> + 2	<i>9M</i> +3 ↑	M - 1	0	0	0	

Positive maximum $C_j - Z_j$ is 9M + 3 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is 4 and its row index is 2. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 5.

Entering = x_3 , Departing = A_2 , Key Element = 5

 $R_2(\text{new}) = R_2(\text{old}) \div 5$

 $R_1(\text{new}) = R_1(\text{old}) - 3R_2(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_2(\text{new})$

Iteration-2		C_j	3	2	3	- 1	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	A ₁	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>A</i> ₁	- <i>M</i>	3	$-\frac{1}{5}$	$\left(\frac{7}{5}\right)$	0	0	1	0	$\frac{3}{\frac{7}{5}} = \frac{15}{7} \rightarrow$
<i>x</i> ₃	3	4	$\frac{2}{5}$	$\frac{1}{5}$	1	0	0	0	$\frac{4}{\frac{1}{5}} = 20$
<i>A</i> ₃	- <i>M</i>	6	$\frac{3}{5}$	$\frac{9}{5}$	0	1	0	1	$\frac{6}{\frac{9}{5}} = \frac{10}{3}$
<i>Z</i> = 12		Z_j	$-\frac{2M}{5}+\frac{6}{5}$	$-\frac{16M}{5}+\frac{3}{5}$	3	- <i>M</i>	- <i>M</i>	- <i>M</i>	
		$C_j - Z_j$	$\frac{2M}{5} + \frac{9}{5}$	$\frac{16M}{5} + \frac{7}{5} \uparrow$	0	<i>M</i> - 1	0	0	

Positive maximum $C_j - Z_j$ is $\frac{16M}{5} + \frac{7}{5}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{15}{7}$ and its row index is 1. So, the leaving basis variable is A_1 .

 \therefore The pivot element is $\frac{7}{5}$.

Entering = x_2 , Departing = A_1 , Key Element = $\frac{7}{5}$

 $R_1(\text{new}) = R_1(\text{old}) \times \frac{5}{7}$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{5}R_1(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) - \frac{9}{5}R_1(\text{new})$

Iteration-3		C_{j}	3	2	3	- 1	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	A ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_4}}$
<i>x</i> ₂	2	$\frac{15}{7}$	$-\frac{1}{7}$	1	0	0	0	
<i>x</i> ₃	3	$\frac{25}{7}$	$\frac{3}{7}$	0	1	0	0	
A ₃	- <i>M</i>	$\frac{15}{7}$	$\frac{6}{7}$	0	0	(1)	1	$\frac{\frac{15}{7}}{1} = \frac{15}{7} \rightarrow$
<i>Z</i> = 15		Z_{j}	$-\frac{6M}{7}+1$	2	3	-M	-M	
		$C_j - Z_j$	$\frac{6M}{7} + 2$	0	0	<i>M</i> - 1 ↑	0	

Positive maximum $C_j - Z_j$ is M - 1 and its column index is 4. So, the entering variable is x_4 .

Minimum ratio is $\frac{15}{7}$ and its row index is 3. So, the leaving basis variable is A_3 .

 \therefore The pivot element is 1.

Entering $= x_4$, Departing $= A_3$, Key Element = 1

 $R_3(\text{new}) = R_3(\text{old})$

 $R_1(\text{new}) = R_1(\text{old})$

 $R_2(\text{new}) = R_2(\text{old})$

Iteration-4		C_j	3	2	3	- 1	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	MinRatio $\frac{X_B}{x_1}$
<i>x</i> ₂	2	$\frac{15}{7}$	$-\frac{1}{7}$	1	0	0	
<i>x</i> ₃	3	$\frac{25}{7}$	$\frac{3}{7}$	0	1	0	$\frac{\frac{25}{7}}{\frac{3}{7}} = \frac{25}{3}$
<i>x</i> ₄	- 1	$\frac{15}{7}$	$\left(\frac{6}{7}\right)$	0	0	1	$\frac{\frac{15}{7}}{\frac{6}{7}} = \frac{5}{2} \rightarrow$
$Z = \frac{90}{7}$		Z_j	$\frac{1}{7}$	2	3	-1	
		C_j - Z_j	$\frac{20}{7}$ \uparrow	0	0	0	

Positive maximum $C_j - Z_j$ is $\frac{20}{7}$ and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is $\frac{5}{2}$ and its row index is 3. So, the leaving basis variable is x_4 .

 \therefore The pivot element is $\frac{6}{7}$.

Entering $= x_1$, Departing $= x_4$, Key Element $= \frac{6}{7}$

$$R_3(\text{new}) = R_3(\text{old}) \times \frac{7}{6}$$

 $R_1(\text{new}) = R_1(\text{old}) + \frac{1}{7}R_3(\text{new})$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{3}{7}R_3(\text{new})$$

Iteration-5

- 1

3

4/5

12/22/2017			Biç	gM method			
		C_j					
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	MinRatio
<i>x</i> ₂	2	$\frac{5}{2}$	0	1	0	$\frac{1}{6}$	
<i>x</i> ₃	3	$\frac{5}{2}$	0	0	1	$-\frac{1}{2}$	
<i>x</i> ₁	3	$\frac{5}{2}$	1	0	0	$\frac{7}{6}$	
<i>Z</i> = 20		Z_j	3	2	3	$\frac{7}{3}$	
		C_j - Z_j	0	0	0	$-\frac{10}{3}$	

Since all $C_j - Z_j \leq 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = \frac{5}{2}, x_2 = \frac{5}{2}, x_3 = \frac{5}{2}, x_4 = 0$

Max Z = 20

BigM method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + 7x2 + 6x3subject to 2x1 + 4x2 + 7x3 >= 4x1 + 7x2 + 2x3 <= 73x1 + 6x2 + 5x3 <= 25and x1,x2,x3 >= 0

Solution: Problem is

 $Max Z = 3x_1 + 7x_2 + 6x_3$

subject to

 $2x_1 + 4x_2 + 7x_3 \ge 4$ $x_1 + 7x_2 + 2x_3 \le 7$ $3x_1 + 6x_2 + 5x_3 \le 25$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack, surplus, artificial variables

Max $Z = 3x_1 + 7x_2 + 6x_3 + 0S_1 + 0S_2 + 0S_3 - MA_1$ subject to

Iteration-1		C_{j}	3	7	6	0	0	0	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{x_3}}$
A ₁	- <i>M</i>	4	2	4	(7)	- 1	0	0	1	$\frac{4}{7} = \frac{4}{7} \rightarrow$
S ₁	0	7	1	7	2	0	1	0	0	$\frac{7}{2} = \frac{7}{2}$

12/22/2017	BigM method										
S ₂	0	25	3	6	5	0	0	1	0	$\frac{25}{5} = 5$	
Z = 0		Z_{j}	-2M	-4M	-7M	М	0	0	- <i>M</i>		
		$C_j - Z_j$	2 <i>M</i> +3	4M + 7	$7M + 6 \uparrow$	- <i>M</i>	0	0	0		

Positive maximum C_j - Z_j is 7M + 6 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is $\frac{4}{7}$ and its row index is 1. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 7.

Entering = x_3 , Departing = A_1 , Key Element = 7

 $R_1(\text{new}) = R_1(\text{old}) \div 7$

 $R_2(\text{new}) = R_2(\text{old}) - 2R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old})-5R_1(\text{new})$

Iteration-2		C_j	3	7	6	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>x</i> ₃	6	$\frac{4}{7}$	$\frac{2}{7}$	$\frac{4}{7}$	1	$-\frac{1}{7}$	0	0	$\frac{\frac{4}{7}}{\frac{4}{7}} = 1$
<i>S</i> ₁	0	$\frac{41}{7}$	$\frac{3}{7}$	$\left(\frac{41}{7}\right)$	0	$\frac{2}{7}$	1	0	$\frac{\frac{41}{7}}{\frac{41}{7}} = 1 \longrightarrow$
<i>S</i> ₂	0	$\frac{155}{7}$	$\frac{11}{7}$	$\frac{22}{7}$	0	$\frac{5}{7}$	0	1	$\frac{\frac{155}{7}}{\frac{22}{7}} = \frac{155}{22}$
$Z = \frac{24}{7}$		Z_j	$\frac{12}{7}$	$\frac{24}{7}$	6	$-\frac{6}{7}$	0	0	
		C_j - Z_j	$\frac{9}{7}$	$\frac{25}{7}$ \uparrow	0	$\frac{6}{7}$	0	0	

BigM method

Positive maximum $C_j - Z_j$ is $\frac{25}{7}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 1 and its row index is 2. So, the leaving basis variable is S_1 .

 $\therefore \text{ The pivot element is } \frac{41}{7}.$

Entering = x_2 , Departing = S_1 , Key Element = $\frac{41}{7}$

$$R_2(\text{new}) = R_2(\text{old}) \times \frac{7}{41}$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{4}{7}R_2(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) - \frac{22}{7}R_2(\text{new})$

Iteration-3		C_j	3	7	6	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>x</i> ₃	6	0	$\left(\frac{10}{41}\right)$	0	1	$-\frac{7}{41}$	$-\frac{4}{41}$	0	$\frac{0}{\frac{10}{41}} = 0 \longrightarrow$
<i>x</i> ₂	7	1	$\frac{3}{41}$	1	0	$\frac{2}{41}$	$\frac{7}{41}$	0	$\frac{1}{\frac{3}{41}} = \frac{41}{3}$
<i>S</i> ₂	0	19	$\frac{55}{41}$	0	0	$\frac{23}{41}$	$-\frac{22}{41}$	1	$\frac{19}{\frac{55}{41}} = \frac{779}{55}$
<i>Z</i> = 7		Z_j	$\frac{81}{41}$	7	6	$-\frac{28}{41}$	$\frac{25}{41}$	0	
		$C_j - Z_j$	$\frac{42}{41}$ \uparrow	0	0	$\frac{28}{41}$	$-\frac{25}{41}$	0	

Positive maximum $C_j - Z_j$ is $\frac{42}{41}$ and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 0 and its row index is 1. So, the leaving basis variable is x_3 .

$$\therefore$$
 The pivot element is $\frac{10}{41}$

Entering =
$$x_1$$
, Departing = x_3 , Key Element = $\frac{10}{41}$

$$R_1(\text{new}) = R_1(\text{old}) \times \frac{41}{10}$$
$$R_2(\text{new}) = R_2(\text{old}) - \frac{3}{41}R_1(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) - \frac{55}{41}R_1(\text{new})$$

Iteration-4		C_j	3	7	6	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_1}}$
<i>x</i> ₁	3	0	1	0	$\frac{41}{10}$	$-\frac{7}{10}$	$-\frac{2}{5}$	0	
<i>x</i> ₂	7	1	0	1	$-\frac{3}{10}$	$\left(\frac{1}{10}\right)$	$\frac{1}{5}$	0	$\frac{\frac{1}{1}}{\frac{1}{10}} = 10 \rightarrow$
<i>S</i> ₂	0	19	0	0	$-\frac{11}{2}$	$\frac{3}{2}$	0	1	$\frac{19}{\frac{3}{2}} = \frac{38}{3}$
<i>Z</i> = 7		Z_j	3	7	$\frac{51}{5}$	$-\frac{7}{5}$	$\frac{1}{5}$	0	
		$C_j - Z_j$	0	0	$-\frac{21}{5}$	$\frac{7}{5}$ \uparrow	$-\frac{1}{5}$	0	

Positive maximum $C_j - Z_j$ is $\frac{7}{5}$ and its column index is 4. So, the entering variable is S_1 .

Minimum ratio is 10 and its row index is 2. So, the leaving basis variable is x_2 .

 \therefore The pivot element is $\frac{1}{10}$.

Entering = S_1 , Departing = x_2 , Key Element = $\frac{1}{10}$

$$R_2(\text{new}) = R_2(\text{old}) \times 10$$

$$R_1(\text{new}) = R_1(\text{old}) + \frac{7}{10}R_2(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) - \frac{3}{2}R_2(\text{new})$$

Iteration-5		C _j	3	7	6	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
<i>x</i> ₁	3	7	1	7	2	0	1	0	
S ₁	0	10	0	10	-3	1	2	0	
<i>S</i> ₂	0	4	0	-15	- 1	0	-3	1	
<i>Z</i> = 21		Z_{j}	3	21	6	0	3	0	
		$C_j - Z_j$	0	- 14	0	0	- 3	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 7, x_2 = 0, x_3 = 0$

Max Z = 21

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MIN Z = 4x1 - 2x2subject to $x1 + x2 \le 14$ $3x1 + 2x2 \ge 36$ $2x1 + x2 \ge 24$ and $x1,x2 \ge 0$

Solution: Problem is

Min $Z = 4x_1 - 2x_2$

subject to

 $x_{1} + x_{2} \le 14$ $3x_{1} + 2x_{2} \ge 36$ $2x_{1} + x_{2} \ge 24$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_1

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_2

After introducing slack, surplus, artificial variables

Min $Z = 4x_1 - 2x_2 + 0S_1 + 0S_2 + 0S_3 + MA_1 + MA_2$ subject to

$x_1 + x_2$	$_{2} + S_{1}$		= 14
$3x_1 + 2x_2$	2 - S ₂	$+ A_{1}$	= 36
$2x_1 + x_2$	2	- S ₃	$+ A_2 = 24$
and x_1, x_2, S_1	S_1, S_2, S_3, A_1, A_1	$A_2 \ge 0$	

Iteration-1		C_{j}	4	-2	0	0	0	M	M	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	A ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	14	1	1	1	0	0	0	0	$\frac{14}{1} = 14$
A ₁	M	36	3	2	0	-1	0	1	0	$\frac{36}{3} = 12$
12/22/2017				BigM	method					
----------------	---	-------------	--------------------	----------	--------	------------	------------	---	---	---------------------------------
A ₂	M	24	(2)	1	0	0	-1	0	1	$\frac{24}{2} = 12 \rightarrow$
Z = 0		Z_{j}	5 <i>M</i>	3M	0	- <i>M</i>	- <i>M</i>	M	M	
		$C_j - Z_j$	$-5M+4$ \uparrow	- 3M - 2	0	М	М	0	0	

Negative minimum $C_j - Z_j$ is -5M + 4 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 12 and its row index is 3. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 2.

Entering $= x_1$, Departing $= A_2$, Key Element = 2

 $R_3(\text{new}) = R_3(\text{old}) \div 2$

 $R_1(\text{new}) = R_1(\text{old}) - R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - 3R_3(\text{new})$

Iteration-2		C _j	4	-2	0	0	0	М	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	A ₁	$\frac{\text{MinRatio}}{\frac{X_B}{S_3}}$
<i>S</i> ₁	0	2	0	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	$\frac{2}{\frac{1}{2}} = 4$
<i>A</i> ₁	М	0	0	$\frac{1}{2}$	0	- 1	$\left(\frac{3}{2}\right)$	1	$\frac{0}{\frac{3}{2}} = 0 \longrightarrow$
<i>x</i> ₁	4	12	1	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	
Z = 48		Zj	4	$\frac{M}{2}$ + 2	0	- <i>M</i>	$\frac{3M}{2} - 2$	М	
		$C_j - Z_j$	0	$-\frac{M}{2}-4$	0	М	$-\frac{3M}{2}+2\uparrow$	0	

Negative minimum $C_j - Z_j$ is $-\frac{3M}{2} + 2$ and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 0 and its row index is 2. So, the leaving basis variable is A_1 .

 \therefore The pivot element is $\frac{3}{2}$.

Entering = S_3 , Departing = A_1 , Key Element = $\frac{3}{2}$

$$R_2(\text{new}) = R_2(\text{old}) \times \frac{2}{3}$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{2}R_2(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) + \frac{1}{2}R_2(\text{new})$$

Iteration-3		C_j	4	-2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	2	0	$\frac{1}{3}$	1	$\frac{1}{3}$	0	$\frac{2}{\frac{1}{3}} = 6$
<i>S</i> ₃	0	0	0	$\left(\frac{1}{3}\right)$	0	$-\frac{2}{3}$	1	$\frac{0}{\frac{1}{3}} = 0 \longrightarrow$
<i>x</i> ₁	4	12	1	$\frac{2}{3}$	0	$-\frac{1}{3}$	0	$\frac{12}{\frac{2}{3}} = 18$
<i>Z</i> = 48		Z_j	4	$\frac{8}{3}$	0	$-\frac{4}{3}$	0	
		C_j - Z_j	0	$-\frac{14}{3}$ \uparrow	0	$\frac{4}{3}$	0	

Negative minimum $C_j - Z_j$ is $-\frac{14}{3}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 0 and its row index is 2. So, the leaving basis variable is S_3 .

 \therefore The pivot element is $\frac{1}{3}$.

Entering = x_2 , Departing = S_3 , Key Element = $\frac{1}{3}$

 $R_2(\text{new}) = R_2(\text{old}) \times 3$

about:blank

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{3}R_2(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) - \frac{2}{3}R_2(\text{new})$$

Iteration-4		C_j	4	-2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_2}}$
<i>S</i> ₁	0	2	0	0	1	(1)	- 1	$\frac{2}{1} = 2 \rightarrow$
x ₂	-2	0	0	1	0	-2	3	
<i>x</i> ₁	4	12	1	0	0	1	-2	$\frac{12}{1} = 12$
<i>Z</i> = 48		Z_j	4	-2	0	8	-14	
		C_j - Z_j	0	0	0	-8 ↑	14	

Negative minimum $C_j - Z_j$ is -8 and its column index is 4. So, the entering variable is S_2 .

Minimum ratio is 2 and its row index is 1. So, the leaving basis variable is S_1 .

\therefore The pivot element is 1.

Entering = S_2 , Departing = S_1 , Key Element = 1

 $R_1(\text{new}) = R_1(\text{old})$

 $R_2(\text{new}) = R_2(\text{old}) + 2R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_1(\text{new})$

Iteration-5		C_j	4	-2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	S ₃	MinRatio
S ₂	0	2	0	0	1	1	- 1	
x ₂	-2	4	0	1	2	0	1	
<i>x</i> ₁	4	10	1	0	- 1	0	- 1	
Z = 32		Zj	4	-2	- 8	0	- 6	
		İ						1

about:blank

2/22/2017							
	C_j - Z_j	0	0	8	0	6	

Since all $C_j - Z_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 10, x_2 = 4$

 $\operatorname{Min} Z = 32$

Solution is provided by AtoZmath.com