Guideline to Simplex Method

Step1. Check if the linear programming problem is a standard maximization problem in standard form, i.e., if all the following conditions are satisfied:

- It's to maximize an objective function;
- All variables should be non-negative (i.e. ≥ 0).
- Constraints should all be \leq a non-negative.

Step 2. Create slack variables to convert the inequalities to equations.
Step 3. Write the objective function as an equation in the form "left hand side" $=0$ where terms involving variables are negative. Example: $Z=3 x+4 y$ becomes $-3 x-4 y+Z=$ 0.

Step 4. Place the system of equations with slack variables, into a matrix. Place the revised objective equation in the bottom row.

Step 5. Select pivot column by finding the most negative indicator. (Indicators are those elements in bottom row except last two elements in that row)

Step 6. Select pivot row. (Divide the last column by pivot column for each corresponding entry except bottom entry and negative entries. Choose the smallest positive result. The corresponding row is the pivot row. In case there is no positive entry in pivot column above dashed line, there is no optimal solutions)

Step 7. Find pivot: Circle the pivot entry at the intersection of the pivot column and the pivot row, and identify entering variable and exit variable at mean time. Divide pivot by itself in that row to obtain 1. (NEVER SWAP TWO ROWS in Simplex Method!) Also obtain zeros for all rest entries in pivot column by row operations.

Step 8. Do we get all nonnegative indicators? If yes, we may stop. Otherwise repeat step 5 to step 7 .

Step 9. Read the results: Correspond the last column entries to the variables in front of the first column. The variables not showing are automatically equal to 0 .

$$
2 x_{1}+x_{2} \leq 8
$$

Example. Maximize $P=3 x_{1}+x_{2}$ Subject to: $2 x_{1}+3 x_{2} \leq 12$

$$
x_{1}, x_{2} \geq 0
$$

Solution

Step 1. This is of course a standard maximization problem in standard form.
Step 2. Rewrite the two problem constraints as equations by using slack variables:
$2 x_{1}+x_{2}+s_{1}=8$
$2 x_{1}+3 x_{2}+s_{2}=12$

Step 3. Rewrite the objective function in the form $-3 x_{1}-x_{2}+P=0$. Put it together with the

$$
2 x_{1}+x_{2}+s_{1} \quad=8
$$

problem constraints: $2 x_{1}+3 x_{2}+s_{2}=12$, we get a linear system with 5 variables and 3

$$
-3 x_{1}-x_{2} \quad+\mathrm{P}=12
$$

equations, which is called initial system.
Step 4. Write the initial system in matrix form (initial simplex tableau). See below.
Step 5 to step 9:

$$
\begin{aligned}
& \stackrel{1}{\frac{1}{2} R_{1} \rightarrow R_{1}} \begin{array}{l}
x_{1} \\
s_{2} \\
p
\end{array}\left[\begin{array}{ccccc|c}
1 & 1 / 2 & 1 / 2 & 0 & 0 & 4 \\
2 & 3 & 0 & 1 & 0 & 12 \\
\hdashline-3 & -1 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Check: compare to the method we did in 5-3, we got same answer!

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{2 x} \mathbf{1}+\mathbf{3 x} \mathbf{2}$
subject to
$6 \times 1+4 \times 2<=4$
$2 \times 1+4 \times 2<=6$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=2 x_{1}+3 x_{2}$
subject to

$$
\begin{aligned}
& 6 x_{1}+4 x_{2} \leq 4 \\
& 2 x_{1}+4 x_{2} \leq 6
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=2 x_{1}+3 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
& 6 x_{1}+4 x_{2}+S_{1}=4 \\
& 2 x_{1}+4 x_{2}+S_{2}=6
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	2	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	4	6	$\mathbf{(4)}$	1	0	$\frac{4}{4}=1 \rightarrow$
S_{2}	0	6	2	4	0	1	$\frac{6}{4}=\frac{3}{2}$
$\boldsymbol{Z}=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
\boldsymbol{y}		$C_{j}-Z_{j}$	2	$3 \uparrow$	0	0	

Positive maximum $C_{j}-Z_{j}$ is 3 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 1 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 4 .
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=4$
$R_{1}($ new $)=R_{1}($ old $) \div 4$
R_{2} (new) $=R_{2}($ old $)-4 R_{1}$ (new)

Iteration-2		C_{j}	2	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{2}	3	1	$\frac{3}{2}$	1	$\frac{1}{4}$	0	
S_{2}	0	2	-4	0	-1	1	
$\boldsymbol{Z}=\mathbf{3}$		$Z_{\boldsymbol{j}}$	$\frac{\mathbf{9}}{\mathbf{2}}$	$\mathbf{3}$	$\frac{\mathbf{3}}{\mathbf{4}}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$-\frac{5}{2}$	0	$-\frac{3}{4}$	0	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=1$
$\operatorname{Max} Z=3$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{2 x} 1+5 \times 2+7 \times 3$
subject to
$\mathbf{3 \times 1}+\mathbf{2 \times 2}+\mathbf{4 \times 3}<=100$
$\times 1+4 \times 2+2 \times 3<=100$
$\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3<=100$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=2 x_{1}+5 x_{2}+7 x_{3}$
subject to

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+4 x_{3} \leq 100 \\
& x_{1}+4 x_{2}+2 x_{3} \leq 100 \\
& x_{1}+x_{2}+x_{3} \leq 100 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}
3. As the constraint 3 is of type $' \leq$ ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=2 x_{1}+5 x_{2}+7 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to

$$
\begin{aligned}
3 x_{1}+2 x_{2}+4 x_{3}+S_{1} & =100 \\
x_{1}+4 x_{2} & +2 x_{3}+S_{2} \\
x_{1} & =100 \\
+x_{2} & +x_{3}
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	2	5	7	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{3}}}$ S_{1}
0	100	3	2	$\mathbf{(4)}$	1	0	0	$\frac{100}{4}=25 \rightarrow$	
S_{2}	0	100	1	4	2	0	1	0	$\frac{100}{2}=50$

12/22/2017

S_{3}	0	100	1	1	1	0	0	1	$\frac{100}{1}=100$
$Z=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	2	5	$7 \uparrow$	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is 7 and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is 25 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 4 .
Entering $=x_{3}$, Departing $=S_{1}$, Key Element $=4$
$R_{1}($ new $)=R_{1}($ old $) \div 4$
$R_{2}($ new $)=R_{2}($ old $)-2 R_{1}($ new $)$
R_{3} (new) $=R_{3}$ (old) $-R_{1}$ (new)

Iteration-2		C_{j}	2	5	7	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
x_{3}	7	25	$\frac{3}{4}$	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0	$\frac{25}{\frac{1}{2}}=50$
$\boldsymbol{S}_{\mathbf{2}}$	0	50	$-\frac{1}{2}$	$\mathbf{(3)}$	0	$-\frac{1}{2}$	1	0	$\frac{50}{3}=\frac{50}{3} \rightarrow$
S_{3}	0	75	$\frac{1}{4}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	0	1	$\frac{75}{\frac{1}{2}}=150$
$\boldsymbol{Z}=\mathbf{1 7 5}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\frac{\mathbf{2 1}}{4}$	$\frac{\mathbf{7}}{\mathbf{2}}$	$\mathbf{7}$	$\frac{7}{4}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$-\frac{13}{4}$	$\frac{3}{2} \uparrow$	0	$-\frac{7}{4}$	0	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{3}{2}$ and its column index is 2 . So, the entering variable is x_{2}.

Minimum ratio is $\frac{50}{3}$ and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is 3 .
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=3$
$R_{2}($ new $)=R_{2}($ old $) \div 3$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{2} R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-\frac{1}{2} R_{2}($ new $)$

Iteration-3		C_{j}	2	5	7	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
x_{3}	7	$\frac{50}{3}$	$\frac{5}{6}$	0	1	$\frac{1}{3}$	$-\frac{1}{6}$	0	
x_{2}	5	$\frac{50}{3}$	$-\frac{1}{6}$	1	0	$-\frac{1}{6}$	$\frac{1}{3}$	0	
S_{3}	0	$\frac{200}{3}$	$\frac{1}{3}$	0	0	$-\frac{1}{6}$	$-\frac{1}{6}$	1	
$\boldsymbol{Z}=\mathbf{2 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{7}$	$\frac{3}{2}$	$\frac{1}{2}$	$\mathbf{0}$	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=\frac{50}{3}, x_{3}=\frac{50}{3}$
$\operatorname{Max} Z=200$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{2 x} 1+\mathbf{x} 2$
subject to
$\mathbf{2 x} 1+\mathrm{x} 2<=10$
$2 \times 1<=40$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=2 x_{1}+x_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 10 \\
2 x_{1} & \leq 40
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type $' \leq$ ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=2 x_{1}+x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2}+S_{1} & =10 \\
2 x_{1} & =S_{2}
\end{aligned}=40
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	2	1	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	10	$(\mathbf{2}$	1	1	0	$\frac{10}{2}=5 \rightarrow$
S_{2}	0	40	2	0	0	1	$\frac{40}{2}=20$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	$2 \uparrow$	1	0	0		

Positive maximum $C_{j}-Z_{j}$ is 2 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 5 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 2 .
Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=2$
$R_{1}($ new $)=R_{1}($ old $) \div 2$
R_{2} (new) $=R_{2}($ old $)-2 R_{1}($ new $)$

Iteration-2		C_{j}	2	1	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	2	5	1	$\frac{1}{2}$	$\frac{1}{2}$	0	
S_{2}	0	30	0	-1	-1	1	
$\boldsymbol{Z}=\mathbf{1 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	0	0	-1	0		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=5, x_{2}=0$
$\operatorname{Max} Z=10$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} \mathbf{1}+\mathbf{2 x} \mathbf{2}$
subject to
$2 \times 1+2 \times 2<=10$
$\mathrm{x} 1+3 \times 2<=6$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
subject to

$$
\begin{aligned}
2 x_{1} & +2 x_{2}
\end{aligned} \leq 10
$$

and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+2 x_{2}+S_{1} & =10 \\
x_{1} & +3 x_{2}+S_{2}
\end{aligned}=6
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	3	2	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	10	$(\mathbf{2}$	2	1	0	$\frac{10}{2}=5 \rightarrow$
S_{2}	0	6	1	3	0	1	$\frac{6}{1}=6$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	$3 \uparrow$	2	0	0		

Positive maximum $C_{j}-Z_{j}$ is 3 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 5 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 2 .
Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=2$
$R_{1}($ new $)=R_{1}($ old $) \div 2$
R_{2} (new) $=R_{2}$ (old) $-R_{1}$ (new)

Iteration-2		C_{j}	3	2	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	3	5	1	1	$\frac{1}{2}$	0	
S_{2}	0	1	0	2	$-\frac{1}{2}$	1	
$\boldsymbol{Z}=\mathbf{1 5}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{3}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	0	-1	$-\frac{3}{2}$	0		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=5, x_{2}=0$
$\operatorname{Max} Z=15$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} \mathbf{1}+\mathbf{9 x} \mathbf{2}$
subject to
$\mathrm{x} 1+4 \times 2<=8$
$\mathrm{x} 1+2 \times 2<=4$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+9 x_{2}$
subject to
$x_{1}+4 x_{2} \leq 8$
$x_{1}+2 x_{2} \leq 4$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=3 x_{1}+9 x_{2}+0 S_{1}+0 S_{2}$
subject to
$x_{1}+4 x_{2}+S_{1}=8$
$x_{1}+2 x_{2}+S_{2}=4$
and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	3	9	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
S_{1}	0	8	1	4	1	0	$\frac{8}{4}=2$
$\boldsymbol{S}_{\mathbf{2}}$	0	4	1	$\mathbf{(2)}$	0	1	$\frac{4}{2}=2 \rightarrow$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
\boldsymbol{y}	$C_{j}-Z_{j}$	3	$9 \uparrow$	0	0		

Positive maximum $C_{j}-Z_{j}$ is 9 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 2 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is 2 .
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=2$
$R_{2}($ new $)=R_{2}($ old $) \div 2$
R_{1} (new) $=R_{1}($ old $)-4 R_{2}($ new $)$

Iteration-2		C_{j}	3	9	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
S_{1}	0	0	-1	0	1	-2	
x_{2}	9	2	$\frac{1}{2}$	1	0	$\frac{1}{2}$	
$\boldsymbol{Z}=\mathbf{1 8}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\frac{\mathbf{9}}{\mathbf{2}}$	$\mathbf{9}$	$\mathbf{0}$	$\frac{\mathbf{9}}{\mathbf{2}}$	
		$C_{j}-Z_{j}$	$-\frac{3}{2}$	0	0	$-\frac{9}{2}$	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=2$
$\operatorname{Max} Z=18$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} 1+\mathbf{x} 2+2 \times 3$
subject to
$\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3<=2$
$2 \times 1+\mathrm{x} 2+\mathrm{x} 3<=3$
$\mathrm{x} 1+2 \times 2+2 \times 3<=4$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+x_{2}+2 x_{3}$
subject to

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3} \leq 2 \\
2 x_{1}+x_{2}+x_{3} \leq 3 \\
x_{1}+2 x_{2}+2 x_{3} \leq 4
\end{array}
$$

and $x_{1}, x_{2}, x_{3} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=3 x_{1}+x_{2}+2 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+S_{1} & =2 \\
2 x_{1}+x_{2}+x_{3}+S_{2} & =3 \\
x_{1}+2 x_{2}+2 x_{3} & +S_{3}=4
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	3	1	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$x_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$
$\boldsymbol{x}_{\mathbf{1}}$									

12/22/2017

S_{3}	0	4	1	2	2	0	0	1	$\frac{4}{1}=4$
$Z=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$3 \uparrow$	1	2	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is 3 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is $\frac{3}{2}$ and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is 2 .
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=2$
$R_{2}($ new $)=R_{2}($ old $) \div 2$
$R_{1}($ new $)=R_{1}($ old $)-R_{2}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-R_{2}($ new $)$

Iteration-2		C_{j}	3	1	2	0	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	\boldsymbol{S}_{3}	MinRatio $\frac{X_{B}}{x_{3}}$
S_{1}	0	$\frac{1}{2}$	0	$\frac{1}{2}$	$\left(\frac{1}{2}\right)$	1	- $\frac{1}{2}$	0	$\frac{\frac{1}{2}}{\frac{1}{2}}=1 \rightarrow$
x_{1}	3	$\frac{3}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{\frac{3}{2}}{\frac{1}{2}}=3$
S_{3}	0	$\frac{5}{2}$	0	$\frac{3}{2}$	$\frac{3}{2}$	0	- $\frac{1}{2}$	1	$\frac{\frac{5}{2}}{\frac{3}{2}}=\frac{5}{3}$
$Z=\frac{9}{2}$		Z_{j}	3	$\frac{3}{2}$	$\frac{3}{2}$	0	$\frac{3}{2}$	0	
		$C_{j}-Z_{j}$	0	$-\frac{1}{2}$	$\frac{1}{2} \uparrow$	0	$-\frac{3}{2}$	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{1}{2}$ and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is 1 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is $\frac{1}{2}$.
Entering $=x_{3}$, Departing $=S_{1}$, Key Element $=\frac{1}{2}$
$R_{1}($ new $)=R_{1}($ old $) \times 2$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{2} R_{1}$ (new)
$R_{3}($ new $)=R_{3}($ old $)-\frac{3}{2} R_{1}$ (new)

Iteration-3		C_{j}	3	1	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
x_{3}	2	1	0	1	1	2	-1	0	
x_{1}	3	1	1	0	0	-1	1	0	
S_{3}	0	1	0	0	0	-3	1	1	
$\boldsymbol{Z}=\mathbf{5}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	0	-1	0	-1	-1	0		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=1, x_{2}=0, x_{3}=1$
$\operatorname{Max} Z=5$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{4 x} \mathbf{1}+\mathbf{3 x} \mathbf{2}$
subject to
$\mathbf{2 x} 1+\mathrm{x} 2<=1000$
$\mathrm{x} 1+\mathrm{x} 2<=800$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=4 x_{1}+3 x_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 1000 \\
& x_{1}+x_{2} \leq 800
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=4 x_{1}+3 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+x_{2}+S_{1} & =1000 \\
x_{1}+x_{2}+S_{2} & =800
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	4	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$
$\boldsymbol{x}_{\mathbf{1}}$							

Positive maximum $C_{j}-Z_{j}$ is 4 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 500 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 2 .
Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=2$
$R_{1}($ new $)=R_{1}($ old $) \div 2$
R_{2} (new) $=R_{2}($ old $)-R_{1}$ (new)

Iteration-2		C_{j}	4	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{2}}$
x_{1}	4	500	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{500}{\frac{1}{2}}=1000$
$\boldsymbol{S}_{\mathbf{2}}$	0	300	0	$\left(\frac{\mathbf{1}}{\mathbf{2}}\right)$	$\frac{-1}{2}$	1	$\frac{300}{\frac{1}{2}}=600 \rightarrow$
$\boldsymbol{Z}=\mathbf{2 0 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{0}$	

Positive maximum $C_{j}-Z_{j}$ is 1 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 600 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is $\frac{1}{2}$.
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=\frac{1}{2}$
$R_{2}($ new $)=R_{2}($ old $) \times 2$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{2} R_{2}$ (new)

Iteration-3		C_{j}	4	3	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	4	200	1	0	1	-1	

about:blank

x_{2}	3	600	0	1	-1	2	
$\boldsymbol{Z}=\mathbf{2 6 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	
		$C_{j}-Z_{j}$	0	0	-1	-2	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=200, x_{2}=600$
$\operatorname{Max} Z=2600$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAXZ $=4 \times 1+8 \times 2$
subject to
$2 \times 1+4 \times 2<=4$
$3 \times 1+6 \times 2<=6$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=4 x_{1}+8 x_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \leq 4 \\
& 3 x_{1}+6 x_{2} \leq 6 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type $' \leq$ ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=4 x_{1}+8 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+S_{1}=4 \\
& 3 x_{1}+6 x_{2}+S_{2}=6
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	4	8	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$
$\boldsymbol{x}_{\mathbf{2}}$							

Positive maximum $C_{j}-Z_{j}$ is 8 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 1 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is 6 .
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=6$
$R_{2}($ new $)=R_{2}($ old $) \div 6$
R_{1} (new) $=R_{1}($ old $)-4 R_{2}$ (new)

Iteration-2		C_{j}	4	8	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
S_{1}	0	0	0	0	1	$-\frac{2}{3}$	
x_{2}	8	1	$\frac{1}{2}$	1	0	$\frac{1}{6}$	
$\boldsymbol{Z}=\mathbf{8}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{0}$	$\frac{\mathbf{4}}{\mathbf{3}}$	
	$C_{j}-Z_{j}$	0	0	0	$-\frac{4}{3}$		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=1$
$\operatorname{Max} Z=8$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAXZ $=\mathbf{5 x} 1+\mathbf{1 6 x} \mathbf{2}$
subject to
$2 \times 1+5 \times 2<=10000$
$3 \times 1+4 \times 2<=15000$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=5 x_{1}+16 x_{2}$
subject to
$2 x_{1}+5 x_{2} \leq 10000$
$3 x_{1}+4 x_{2} \leq 15000$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=5 x_{1}+16 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+5 x_{2}+S_{1} & =10000 \\
3 x_{1}+4 x_{2}+S_{2} & =15000
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	5	16	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$
$\boldsymbol{x}_{\mathbf{1}}$	0	10000	2	$\mathbf{(5)}$	1	0	$\frac{10000}{5}=2000 \rightarrow$
S_{2}	0	15000	3	4	0	1	$\frac{15000}{4}=3750$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	5	$16 \uparrow$	0	0		

Positive maximum $C_{j}-Z_{j}$ is 16 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 2000 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 5 .
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=5$
$R_{1}($ new $)=R_{1}($ old $) \div 5$
R_{2} (new) $=R_{2}$ (old) $-4 R_{1}$ (new)

Iteration-2		C_{j}	5	16	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{2}	16	2000	$\frac{2}{5}$	1	$\frac{1}{5}$	0	
S_{2}	0	7000	$\frac{7}{5}$	0	$-\frac{4}{5}$	1	
$\boldsymbol{Z}=\mathbf{3 2 0 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\frac{\mathbf{3 2}}{\mathbf{5}}$	$\mathbf{1 6}$	$\frac{\mathbf{1 6}}{\mathbf{5}}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$\frac{-7}{5}$	0	$-\frac{16}{5}$	0	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=2000$
$\operatorname{Max} Z=32000$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAXZ $=6 \times 1+8 \times 2$
subject to
$30 \times 1+20 \times 2<=300$
$5 \times 1+10 \times 2<=110$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=6 x_{1}+8 x_{2}$
subject to
$30 x_{1}+20 x_{2} \leq 300$
$5 x_{1}+10 x_{2} \leq 110$
and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=6 x_{1}+8 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
& 30 x_{1}+20 x_{2}+S_{1}=300 \\
& 5 x_{1}+10 x_{2}+S_{2}=110
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	6	8	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{2}}$
S_{1}	0	300	30	20	1	0	$\frac{300}{20}=15$
$\boldsymbol{S}_{\mathbf{2}}$	0	110	5	$\mathbf{(1 0)}$	0	1	$\frac{110}{10}=11 \rightarrow$
$\boldsymbol{Z}=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	6	$8 \uparrow$	0	0	

Positive maximum $C_{j}-Z_{j}$ is 8 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 11 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is 10 .
Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=10$
R_{2} (new) $=R_{2}($ old $) \div 10$
R_{1} (new) $=R_{1}($ old $)-20 R_{2}$ (new)

Iteration-2		C_{j}	6	8	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{\boldsymbol { X } _ { \boldsymbol { B } }}$ $\boldsymbol{x}_{\mathbf{1}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	80	$\mathbf{(2 0)}$	0	1	-2	$\frac{80}{20}=4 \rightarrow$
x_{2}	8	11	$\frac{1}{2}$	1	0	$\frac{1}{10}$	$\frac{11}{\frac{1}{2}}=22$
$\boldsymbol{Z}=\mathbf{8 8}$	$Z_{\boldsymbol{j}}$	4	$\mathbf{8}$	$\mathbf{0}$	$\frac{4}{5}$		

Positive maximum $C_{j}-Z_{j}$ is 2 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 4 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 20 .
Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=20$
R_{1} (new) $=R_{1}($ old $) \div 20$
$R_{2}($ new $)=R_{2}($ old $)-\frac{1}{2} R_{1}$ (new)

Iteration-3		C_{j}	6	8	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	6	4	1	0	$\frac{1}{20}$	$-\frac{1}{10}$	

about:blank

x_{2}	8	9	0	1	$-\frac{1}{40}$	$\frac{3}{20}$	
$\boldsymbol{Z}=\mathbf{9 6}$		Z_{j}	$\mathbf{6}$	$\mathbf{8}$	$\frac{\mathbf{1}}{\mathbf{1 0}}$	$\frac{\mathbf{3}}{\mathbf{5}}$	
		$C_{j}-Z_{j}$	0	0	$-\frac{1}{10}$	$-\frac{3}{5}$	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=4, x_{2}=9$
$\operatorname{Max} Z=96$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{7 x} 1+\mathbf{6 x} \mathbf{2}$
subject to
$6 \times 1+7 \times 2<=12$
$5 \times 2<=30$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=7 x_{1}+6 x_{2}$
subject to

$$
\begin{array}{r}
6 x_{1}+7 x_{2} \leq 12 \\
5 x_{2} \leq 30
\end{array}
$$

and $x_{1}, x_{2} \geq 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=7 x_{1}+6 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
6 x_{1}+7 x_{2}+S_{1} & =12 \\
5 x_{2}+S_{2} & =30
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	7	6	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$
$\boldsymbol{S}_{\boldsymbol{1}}$	0	12	$\mathbf{(6)}$	7	1	0	$\frac{12}{6}=2 \rightarrow$
S_{2}	0	30	0	5	0	1	$\boldsymbol{- - -}$
$\boldsymbol{Z}=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$7 \uparrow$	6	0	0	

Positive maximum $C_{j}-Z_{j}$ is 7 and its column index is 1 . So, the entering variable is x_{1}.

Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 6 .
Entering $=x_{1}$, Departing $=S_{1}$, Key Element $=6$
$R_{1}($ new $)=R_{1}($ old $) \div 6$
$R_{2}($ new $)=R_{2}($ old $)$

Iteration-2		C_{j}	7	6	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{1}	7	2	1	$\frac{7}{6}$	$\frac{1}{6}$	0	
S_{2}	0	30	0	5	0	1	
$\boldsymbol{Z}=\mathbf{1 4}$		$Z_{\boldsymbol{j}}$	7	$\frac{\mathbf{4 9}}{\mathbf{6}}$	$\frac{7}{\mathbf{6}}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	0	$-\frac{13}{6}$	$\frac{7}{6}$	0	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=2, x_{2}=0$
$\operatorname{Max} Z=14$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=120 \times 1+110 \times 2$
subject to
$5 \times 1+2 \times 2<=100$
$3 \times 1+3 \times 2<=50$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=120 x_{1}+110 x_{2}$
subject to

$$
\begin{aligned}
& 5 x_{1}+2 x_{2} \leq 100 \\
& 3 x_{1}+3 x_{2} \leq 50 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=120 x_{1}+110 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
5 x_{1}+2 x_{2}+S_{1} & =100 \\
3 x_{1}+3 x_{2}+S_{2} & =50
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	120	110	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{1}}$
S_{1}	0	100	5	2	1	0	$\frac{100}{5}=20$
$\boldsymbol{S}_{\mathbf{2}}$	0	50	$\mathbf{(3)}$	3	0	1	$\frac{50}{3}=\frac{50}{3} \rightarrow$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	$120 \uparrow$	110	0	0		

Positive maximum $C_{j}-Z_{j}$ is 120 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is $\frac{50}{3}$ and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is 3 .
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=3$
$R_{2}($ new $)=R_{2}($ old $) \div 3$
R_{1} (new) $=R_{1}$ (old)-5 $5 R_{2}$ (new)

Iteration-2		C_{j}	120	110	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
S_{1}	0	$\frac{50}{3}$	0	-3	1	$-\frac{5}{3}$	
x_{1}	120	$\frac{50}{3}$	1	1	0	$\frac{1}{3}$	
$\boldsymbol{Z}=\mathbf{2 0 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{1 2 0}$	$\mathbf{1 2 0}$	$\mathbf{0}$	$\mathbf{4 0}$	
	$C_{j}-Z_{j}$	0	-10	0	-40		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{50}{3}, x_{2}=0$
$\operatorname{Max} Z=2000$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=500 \times 1+600 \times 2+1200 \times 3$
subject to
$2 \times 1+4 \times 2+6 \times 3<=160$
$3 \times 1+2 \times 2+4 \times 3<=120$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=500 x_{1}+600 x_{2}+1200 x_{3}$
subject to

$$
\begin{aligned}
2 x_{1}+4 x_{2} & +6 x_{3} \leq 160 \\
3 x_{1}+2 x_{2} & +4 x_{3} \leq 120 \\
\text { and } x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=500 x_{1}+600 x_{2}+1200 x_{3}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+4 x_{2}+6 x_{3}+S_{1} & =160 \\
3 x_{1}+2 x_{2}+4 x_{3}+S_{2} & =120
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	500	600	1200	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{3}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	160	2	4	$\mathbf{(6)}$	1	0	$\frac{160}{6}=\frac{80}{3} \rightarrow$
S_{2}	0	120	3	2	4	0	1	$\frac{120}{4}=30$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	500	600	$1200 \uparrow$	0	0		

Positive maximum $C_{j}-Z_{j}$ is 1200 and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is $\frac{80}{3}$ and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 6 .
Entering $=x_{3}$, Departing $=S_{1}$, Key Element $=6$
$R_{1}($ new $)=R_{1}($ old $) \div 6$
R_{2} (new) $=R_{2}$ (old) $-4 R_{1}$ (new)

Iteration-2		C_{j}	500	600	1200	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	MinRatio $\frac{X_{B}}{x_{1}}$
x_{3}	1200	$\frac{80}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	1	$\frac{1}{6}$	0	$\frac{\frac{80}{3}}{\frac{1}{3}}=80$
S_{2}	0	$\frac{40}{3}$	$\left(\frac{5}{3}\right)$	$-\frac{2}{3}$	0	- $\frac{2}{3}$	1	$\frac{\frac{40}{3}}{\frac{5}{3}}=8 \rightarrow$
$Z=32000$		Z_{j}	400	800	1200	200	0	
		$C_{j}-Z_{j}$	$100 \uparrow$	-200	0	-200	0	

Positive maximum $C_{j}-Z_{j}$ is 100 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 8 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is $\frac{5}{3}$.
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=\frac{5}{3}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{3}{5}$
$R_{1}($ new $)=R_{1}($ old $)-\frac{1}{3} R_{2}$ (new)

Iteration-3		C_{j}	500	600	1200	0	0	

about:blank

\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{3}	1200	24	0	$\frac{4}{5}$	1	$\frac{3}{10}$	$-\frac{1}{5}$	
x_{1}	500	8	1	$-\frac{2}{5}$	0	$-\frac{2}{5}$	$\frac{3}{5}$	
$\boldsymbol{Z}=\mathbf{3 2 8 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{5 0 0}$	$\mathbf{7 6 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 6 0}$	$\mathbf{6 0}$	
	$C_{j}-Z_{j}$	0	-160	0	-160	-60		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=8, x_{2}=0, x_{3}=24$
$\operatorname{Max} Z=32800$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{x} 1-\mathrm{x} 2+\mathbf{2 x} \mathbf{3}$
subject to
$\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3<=4$
$\mathrm{x} 1-2 \times 2+\mathrm{x} 3<=6$
$\mathbf{3 x} 1+2 \times 2+\mathrm{x} 3<=0$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=x_{1}-x_{2}+2 x_{3}$
subject to

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3} \leq 4 \\
x_{1}-2 x_{2}+x_{3} \leq 6 \\
3 x_{1}+2 x_{2}+x_{3} \leq 0 \\
\text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=x_{1}-x_{2}+2 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+S_{1} & =4 \\
x_{1}-2 x_{2}+x_{3}+S_{2} & =6 \\
3 x_{1}+2 x_{2}+x_{3} & +S_{3}
\end{aligned}=0
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	1	-1	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{3}}$
S_{1}	0	4	1	1	1	1	0	0	$\frac{4}{1}=4$
S_{2}	0	6	1	-2	1	0	1	0	$\frac{6}{1}=6$

S_{3}	0	0	3	2	$\mathbf{(1)}$	0	0	1	$\frac{0}{1}=0 \rightarrow$
$Z=\mathbf{0}$		$Z_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	1	-1	$2 \uparrow$	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is 2 and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is 0 and its row index is 3 . So, the leaving basis variable is S_{3}.
\therefore The pivot element is 1 .
Entering $=x_{3}$, Departing $=S_{3}$, Key Element $=1$
$R_{3}($ new $)=R_{3}($ old $)$
$R_{1}($ new $)=R_{1}($ old $)-R_{3}($ new $)$
$R_{2}($ new $)=R_{2}$ (old) $-R_{3}$ (new)

Iteration-2		C_{j}	1	-1	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
S_{1}	0	4	-2	-1	0	1	0	-1	
S_{2}	0	6	-2	-4	0	0	1	-1	
x_{3}	2	0	3	2	1	0	0	1	
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	
	$C_{j}-Z_{j}$	-5	-5	0	0	0	-2		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=0, x_{3}=0$
$\operatorname{Max} Z=0$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathrm{x} 1+\mathbf{x} 2+\mathbf{2 x} \mathbf{3}$
subject to
$3 \times 1+2 \times 2+\times 3<=2$
$2 \times 1+2 \times 2+\times 3<=3$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=x_{1}+x_{2}+2 x_{3}$
subject to

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3} \leq 2 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 3 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0 ;
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=x_{1}+x_{2}+2 x_{3}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}+S_{1}=2 \\
& 2 x_{1}+2 x_{2}+x_{3}+S_{2}=3
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	1	1	2	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio $\boldsymbol{X}_{\boldsymbol{B}}$ $\boldsymbol{x}_{\mathbf{3}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	2	3	2	$\mathbf{(1)}$	1	0	$\frac{2}{1}=2 \rightarrow$
S_{2}	0	3	2	2	1	0	1	$\frac{3}{1}=3$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{\boldsymbol{j}}$	1	1	$2 \uparrow$	0	0		

Positive maximum $C_{j}-Z_{j}$ is 2 and its column index is 3 . So, the entering variable is x_{3}.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 1 .
Entering $=x_{3}$, Departing $=S_{1}$, Key Element $=1$
R_{1} (new) $=R_{1}$ (old)
R_{2} (new) $=R_{2}($ old $)-R_{1}$ (new)

Iteration-2		C_{j}	1	1	2	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
x_{3}	2	2	3	2	1	1	0	
S_{2}	0	1	-1	0	0	-1	1	
$\boldsymbol{Z}=\mathbf{4}$		$Z_{\boldsymbol{j}}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	-5	-3	0	-2	0	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=0, x_{2}=0, x_{3}=2$
$\operatorname{Max} Z=4$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAXZ $=\mathbf{3 x} 1+2 \times 2+\times 3$
subject to
$\mathrm{x} 1+\mathbf{2 x} 2+\mathrm{x} 3<=12$
$\mathrm{x} 1+3 \times 2<=18$
$2 \times 1+4 \times 3<=22$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+x_{3}$
subject to

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3} \leq 12 \\
& x_{1}+3 x_{2} \leq 18 \\
& 2 x_{1}+4 x_{3} \leq 22 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type $' \leq$ ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3}+S_{1} & =12 \\
x_{1}+3 x_{2} & =S_{2} \\
2 x_{1}+4 x_{3} & =18 \\
+S_{3} & =22
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$

Iteration-1		C_{j}	3	2	1	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$ S_{1}
0	12	1	2	1	1	0	0	$\frac{12}{1}=12$	
S_{2}	0	18	1	3	0	0	1	0	$\frac{18}{1}=18$

S_{3}	0	22	(2)	0	4	0	0	1	$\frac{22}{2}=11 \rightarrow$
$Z=\mathbf{0}$		Z_{j}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$3 \uparrow$	2	1	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is 3 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 11 and its row index is 3 . So, the leaving basis variable is S_{3}.
\therefore The pivot element is 2 .
Entering $=x_{1}$, Departing $=S_{3}$, Key Element $=2$
$R_{3}($ new $)=R_{3}($ old $) \div 2$
$R_{1}($ new $)=R_{1}($ old $)-R_{3}($ new $)$
$R_{2}($ new $)=R_{2}$ (old) $-R_{3}$ (new)

Iteration-2		C_{j}	3	2	1	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$ $\boldsymbol{S}_{\mathbf{1}}$
0	1	0	$\mathbf{(2)}$	-1	1	0	$-\frac{1}{2}$	$\frac{1}{2}=\frac{1}{2} \rightarrow$	
S_{2}	0	7	0	3	-2	0	1	$-\frac{1}{2}$	$\frac{7}{3}=\frac{7}{3}$
x_{1}	3	11	1	0	2	0	0	$\frac{1}{2}$	
$\boldsymbol{Z}=\mathbf{3 3}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{0}$	$\frac{\mathbf{3}}{\mathbf{2}}$	

Positive maximum $C_{j}-Z_{j}$ is 2 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is $\frac{1}{2}$ and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 2 .

Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=2$
$R_{1}($ new $)=R_{1}($ old $) \div 2$
R_{2} (new) $=R_{2}($ old $)-3 R_{1}$ (new)
R_{3} (new) $=R_{3}($ old $)$

Iteration-3		C_{j}	3	2	1	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	MinRatio
x_{2}	2	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	
S_{2}	0	$\frac{11}{2}$	0	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	$\frac{1}{4}$	
x_{1}	3	11	1	0	2	0	0	$\frac{1}{2}$	
$\boldsymbol{Z}=\mathbf{3 4}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
	$C_{j}-Z_{j}$	0	0	-4	-1	0	-1		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=11, x_{2}=\frac{1}{2}, x_{3}=0$
$\operatorname{Max} Z=34$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAX Z $=\mathbf{3 x} \mathbf{1}+\mathbf{2 x} \mathbf{2}$
subject to
$4 \times 1+3 \times 2<=12$
$4 \times 1+\mathrm{x} 2<=8$
$4 \times 1-\mathrm{x} 2<=8$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
subject to

$$
\begin{aligned}
4 x_{1}+3 x_{2} & \leq 12 \\
4 x_{1}+x_{2} & \leq 8 \\
4 x_{1}-x_{2} & \leq 8 \\
\text { and } x_{1}, x_{2} & \geq 0 ;
\end{aligned}
$$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}
3. As the constraint 3 is of type ' \leq ' we should add slack variable S_{3}

After introducing slack variables

$\operatorname{Max} Z=3 x_{1}+2 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}$
subject to

$$
\begin{aligned}
4 x_{1}+3 x_{2}+S_{1} & =12 \\
4 x_{1}+x_{2}+S_{2} & =8 \\
4 x_{1}-x_{2} & +S_{3}=8 \\
\text { and } x_{1}, x_{2}, S_{1}, S_{2}, S_{3} \geq 0 &
\end{aligned}
$$

Iteration-1		C_{j}	3	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{1}}}$ S_{1}
0	12	4	3	1	0	0	$\frac{12}{4}=3$	
S_{2}	0	8	4	1	0	1	0	$\frac{8}{4}=2$

12/23/2017

\boldsymbol{S}_{3}	0	8	(4)	-1	0	0	1	$\frac{8}{4}=2 \rightarrow$
$Z=\mathbf{0}$		Z_{j}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
		$C_{j}-Z_{j}$	$3 \uparrow$	2	0	0	0	

Positive maximum $C_{j}-Z_{j}$ is 3 and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 2 and its row index is 3 . So, the leaving basis variable is S_{3}.
\therefore The pivot element is 4 .
Entering $=x_{1}$, Departing $=S_{3}$, Key Element $=4$
$R_{3}($ new $)=R_{3}($ old $) \div 4$
R_{1} (new) $=R_{1}($ old $)-4 R_{3}($ new $)$
R_{2} (new) $=R_{2}$ (old) $-4 R_{3}$ (new)

Iteration-2		C_{j}	3	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
S_{1}	0	4	0	4	1	0	-1	$\frac{4}{4}=1$
$\boldsymbol{S}_{\mathbf{2}}$	0	0	0	$\mathbf{(2)}$	0	1	-1	$\frac{0}{2}=0 \rightarrow$
x_{1}	3	2	1	$-\frac{1}{4}$	0	0	$\frac{1}{4}$	
$\boldsymbol{Z}=\mathbf{6}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\frac{\mathbf{3}}{\mathbf{-}}$		$\mathbf{0}$	$\mathbf{0}$	$\frac{\mathbf{3}}{4}$

Positive maximum $C_{j}-Z_{j}$ is $\frac{11}{4}$ and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is 2 .

Entering $=x_{2}$, Departing $=S_{2}$, Key Element $=2$
$R_{2}($ new $)=R_{2}($ old $) \div 2$
R_{1} (new) $=R_{1}($ old $)-4 R_{2}$ (new)
$R_{3}($ new $)=R_{3}($ old $)+\frac{1}{4} R_{2}($ new $)$

Iteration-3		C_{j}	3	2	0	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{S}_{\mathbf{3}}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	4	0	0	1	-2	$\mathbf{(1)}$	$\frac{4}{1}=4 \rightarrow$
x_{2}	2	0	0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{---}{\frac{1}{2}}=16$
x_{1}	3	2	1	0	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{2}{8}$
$\boldsymbol{Z}=\mathbf{6}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{0}$	$\frac{\mathbf{1 1}}{\mathbf{8}}$	$\frac{\mathbf{5}}{\mathbf{8}}$	

Positive maximum $C_{j}-Z_{j}$ is $\frac{5}{8}$ and its column index is 5. So, the entering variable is S_{3}.
Minimum ratio is 4 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 1 .
Entering $=S_{3}$, Departing $=S_{1}$, Key Element $=1$
$R_{1}($ new $)=R_{1}($ old $)$
$R_{2}($ new $)=R_{2}($ old $)+\frac{1}{2} R_{1}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-\frac{1}{8} R_{1}$ (new)

Iteration-4		C_{j}	3	2	0	0	0	
\boldsymbol{B}								MinRatio

	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	
S_{3}	0	4	0	0	1	-2	1	
x_{2}	2	2	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	
x_{1}	3	$\frac{3}{2}$	1	0	$-\frac{1}{8}$	$\frac{3}{8}$	0	
$\boldsymbol{Z}=\frac{\mathbf{1 7}}{\mathbf{2}}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{3}$	$\mathbf{2}$	$\frac{\mathbf{5}}{\mathbf{8}}$	$\frac{\mathbf{1}}{\mathbf{8}}$	$\mathbf{0}$	
		$C_{j}-Z_{\boldsymbol{j}}$	0	0	$\frac{5}{-\frac{5}{8}}$	$-\frac{1}{8}$	0	

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=\frac{3}{2}, x_{2}=2$
$\operatorname{Max} Z=\frac{17}{2}$

Solution is provided by AtoZmath.com

Print This Solution Close This Solution

Find solution using Simplex(BigM) method
MAXZ $=5 \times 1+\mathbf{6 x} \mathbf{2}$
subject to
$2 \times 1+5 \times 2<=10000$
$3 \times 1+4 \times 2<=15000$
and $\mathrm{x} 1, \mathrm{x} 2>=0$

Solution:

Problem is

$\operatorname{Max} Z=5 x_{1}+6 x_{2}$
subject to
$2 x_{1}+5 x_{2} \leq 10000$
$3 x_{1}+4 x_{2} \leq 15000$
and $x_{1}, x_{2} \geq 0 ;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_{1}
2. As the constraint 2 is of type ' \leq ' we should add slack variable S_{2}

After introducing slack variables

$\operatorname{Max} Z=5 x_{1}+6 x_{2}+0 S_{1}+0 S_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+5 x_{2}+S_{1} & =10000 \\
3 x_{1}+4 x_{2}+S_{2} & =15000
\end{aligned}
$$

and $x_{1}, x_{2}, S_{1}, S_{2} \geq 0$

Iteration-1		C_{j}	5	6	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$
$\boldsymbol{S}_{\mathbf{1}}$	0	10000	2	$\mathbf{(5)}$	1	0	$\frac{10000}{5}=2000 \rightarrow$
S_{2}	0	15000	3	4	0	1	$\frac{15000}{4}=3750$
$\boldsymbol{Z}=\mathbf{0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
	$C_{j}-Z_{j}$	5	$6 \uparrow$	0	0		

Positive maximum $C_{j}-Z_{j}$ is 6 and its column index is 2 . So, the entering variable is x_{2}.
Minimum ratio is 2000 and its row index is 1 . So, the leaving basis variable is S_{1}.
\therefore The pivot element is 5 .
Entering $=x_{2}$, Departing $=S_{1}$, Key Element $=5$
$R_{1}($ new $)=R_{1}($ old $) \div 5$
R_{2} (new) $=R_{2}$ (old) $-4 R_{1}$ (new)

Iteration-2		C_{j}	5	6	0	0	
B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	$\begin{gathered} \text { MinRatio } \\ \frac{X_{B}}{x_{1}} \end{gathered}$
x_{2}	6	2000	$\frac{2}{5}$	1	$\frac{1}{5}$	0	$\frac{2000}{\frac{2}{5}}=5000$
S_{2}	0	7000	$\left(\frac{7}{5}\right)$	0	$-\frac{4}{5}$	1	$\frac{7000}{\frac{7}{5}}=5000 \rightarrow$
$Z=12000$		Z_{j}	$\frac{12}{5}$	6	$\frac{6}{5}$	0	
		$C_{j}-Z_{j}$	$\frac{13}{5} \uparrow$	0	$-\frac{6}{5}$	0	

Positive maximum $C_{j}-Z_{j}$ is $\frac{13}{5}$ and its column index is 1 . So, the entering variable is x_{1}.
Minimum ratio is 5000 and its row index is 2 . So, the leaving basis variable is S_{2}.
\therefore The pivot element is $\frac{7}{5}$.
Entering $=x_{1}$, Departing $=S_{2}$, Key Element $=\frac{7}{5}$
$R_{2}($ new $)=R_{2}($ old $) \times \frac{5}{7}$
R_{1} (new) $=R_{1}($ old $)-\frac{2}{5} R_{2}$ (new)

Iteration-3		C_{j}	5	6	0	0	

B	C_{B}	$\boldsymbol{X}_{\boldsymbol{B}}$	x_{1}	x_{2}	S_{1}	S_{2}	$\begin{aligned} & \text { MinRatio } \\ & \frac{X_{B}}{S_{1}} \end{aligned}$
x_{2}	6	0	0	1	$\left(\frac{3}{7}\right)$	$-\frac{2}{7}$	$\frac{0}{\frac{3}{7}}=0 \rightarrow$
x_{1}	5	5000	1	0	$-\frac{4}{7}$	$\frac{5}{7}$	---
$Z=25000$		Z_{j}	5	6	$-\frac{2}{7}$	$\frac{13}{7}$	
		$C_{j}-Z_{j}$	0	0	$\frac{2}{7} \uparrow$	$-\frac{13}{7}$	

Positive maximum $C_{j}-Z_{j}$ is $\frac{2}{7}$ and its column index is 3 . So, the entering variable is S_{1}.
Minimum ratio is 0 and its row index is 1 . So, the leaving basis variable is x_{2}.
\therefore The pivot element is $\frac{3}{7}$.
Entering $=S_{1}$, Departing $=x_{2}$, Key Element $=\frac{3}{7}$
$R_{1}($ new $)=R_{1}($ old $) \times \frac{7}{3}$
$R_{2}($ new $)=R_{2}($ old $)+\frac{4}{7} R_{1}($ new $)$

Iteration-4		C_{j}	5	6	0	0	
\boldsymbol{B}	$\boldsymbol{C}_{\boldsymbol{B}}$	$\boldsymbol{X}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	MinRatio
S_{1}	0	0	0	$\frac{7}{3}$	1	$-\frac{2}{3}$	
x_{1}	5	5000	1	$\frac{4}{3}$	0	$\frac{1}{3}$	
$\boldsymbol{Z}=\mathbf{2 5 0 0 0}$		$\boldsymbol{Z}_{\boldsymbol{j}}$	$\mathbf{5}$	$\frac{\mathbf{2 0}}{\mathbf{3}}$	$\mathbf{0}$	$\frac{\mathbf{5}}{\mathbf{3}}$	
	$C_{j}-Z_{j}$	0	$-\frac{2}{3}$	0	$-\frac{5}{3}$		

Since all $C_{j}-Z_{j} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=5000, x_{2}=0$
$\operatorname{Max} Z=25000$

Solution is provided by AtoZmath.com

