Guideline to Simplex Method

<u>Step1</u>. Check if the linear programming problem is a **standard maximization problem** in **standard form**, i.e., if all the following conditions are satisfied:

- It's to **maximize** an objective function;
- All variables should be non-negative (i.e. ≥ 0).
- Constraints should all be \leq a non-negative.

<u>Step 2</u>. Create **slack variables** to convert the inequalities to equations.

<u>Step 3</u>. Write the *objective* function as an equation in the form "left hand side"= 0 where terms involving variables are negative. *Example*: Z = 3x + 4y becomes -3x - 4y + Z = 0.

<u>Step 4</u>. Place the system of equations with slack variables, into a matrix. Place the revised objective equation in the bottom row.

<u>Step 5</u>. Select **pivot column** by finding the most negative indicator. (**Indicators** are those elements in bottom row except last two elements in that row)

<u>Step 6</u>. Select **pivot row**. (Divide the last column by pivot column for each corresponding entry except bottom entry and negative entries. Choose the smallest positive result. The corresponding row is the pivot row. In case there is no positive entry in pivot column above dashed line, there is no optimal solutions)

<u>Step 7</u>. Find **pivot**: Circle the pivot entry at the intersection of the pivot column and the pivot row, and identify entering variable and exit variable at mean time. Divide pivot by itself in that row to obtain 1. (NEVER SWAP TWO ROWS in Simplex Method!) Also obtain zeros for all rest entries in pivot column by row operations.

<u>Step 8</u>. Do we get all **nonnegative** indicators? If yes, we may stop. Otherwise repeat step 5 to step 7.

<u>Step 9</u>. Read the results: Correspond the last column entries to the variables in front of the first column. The variables not showing are automatically equal to 0.

Example. Maximize $P = 3x_1 + x_2$ Subject to: $2x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$

Solution

Step 1. This is of course a standard maximization problem in standard form.

Step 2. Rewrite the two problem constraints as equations by using slack variables: $2x_1 + x_2 + s_1 = 8$ $2x_1 + 3x_2 + s_2 = 12$

Step 3. Rewrite the objective function in the form $-3x_1 - x_2 + P = 0$. Put it together with the $2x_1 + x_2 + s_1 = 8$ problem constraints: $2x_1 + 3x_2 + s_2 = 12$, we get a linear system with 5 variables and 3 $-3x_1 - x_2 + P = 12$

equations, which is called initial system.

Step 4. Write the initial system in matrix form (initial simplex tableau). See below.

Step 5 to step 9:

$$\frac{1}{2R_{1}+R_{2} \rightarrow R_{2}} \sum_{x_{1}}^{X_{1}} \frac{1}{2} \sum_{x_{2}}^{X_{2}} \sum_{x_{1}}^{X_{2}} \sum_{x_{1}}^{$$

Check: compare to the method we did in 5-3, we got same answer!

Find solution using Simplex(BigM) method MAX Z = 2x1 + 3x2subject to $6x1 + 4x2 \le 4$ $2x1 + 4x2 \le 6$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 2x_1 + 3x_2$ subject to $6x_1 + 4x_2 \le 4$ $2x_1 + 4x_2 \le 6$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = 2x_1 + 3x_2 + 0S_1 + 0S_2$ subject to $6x_1 + 4x_2 + S_1 = 4$ $2x_1 + 4x_2 + S_2 = 6$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		Cj	2	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	4	6	(4)	1	0	$\frac{4}{4} = 1 \rightarrow$
<i>S</i> ₂	0	6	2	4	0	1	$\frac{6}{4} = \frac{3}{2}$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	2	3 ↑	0	0	

Simplex method

Positive maximum C_j - Z_j is 3 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 1 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 4.

Entering $= x_2$, Departing $= S_1$, Key Element = 4

 $R_1(\text{new}) = R_1(\text{old}) \div 4$

 $R_2(\text{new}) = R_2(\text{old}) - 4R_1(\text{new})$

Iteration-2		C_j	2	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	MinRatio
x ₂	3	1	$\frac{3}{2}$	1	$\frac{1}{4}$	0	
<i>S</i> ₂	0	2	-4	0	- 1	1	
<i>Z</i> = 3		Z_j	$\frac{9}{2}$	3	$\frac{3}{4}$	0	
		C_j - Z_j	$-\frac{5}{2}$	0	$-\frac{3}{4}$	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 1$

Max Z = 3

12/22/2017

Simplex method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 2x1 + 5x2 + 7x3subject to $3x1 + 2x2 + 4x3 \le 100$ $x1 + 4x2 + 2x3 \le 100$ $x1 + x2 + x3 \le 100$ and $x1,x2,x3 \ge 0$

Solution: Problem is

 $Max Z = 2x_1 + 5x_2 + 7x_3$

subject to

 $3x_1 + 2x_2 + 4x_3 \le 100$ $x_1 + 4x_2 + 2x_3 \le 100$ $x_1 + x_2 + x_3 \le 100$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = 2x_1 + 5x_2 + 7x_3 + 0S_1 + 0S_2 + 0S_3$ subject to $3x_1 + 2x_2 + 4x_3 + S_1 = 100$

$3x_1 + 2x_2 + 4x_3 + 5_1$		=100
$x_1 + 4x_2 + 2x_3$	+ S ₂	= 100
$x_1 + x_2 + x_3$	+	$S_3 = 100$
and $x_1, x_2, x_3, S_1, S_2, S_3 \ge 0$)	

Iteration-1		C_{j}	2	5	7	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	S ₂	<i>S</i> ₃	MinRatio $\frac{X_B}{x_3}$
<i>S</i> ₁	0	100	3	2	(4)	1	0	0	$\frac{100}{4} = 25 \rightarrow$
S ₂	0	100	1	4	2	0	1	0	$\frac{100}{2} = 50$

about:blank

12	2/22/2017					Simplex metho	d			
	S ₃	0	100	1	1	1	0	0	1	$\frac{100}{1} = 100$
	Z = 0		Z_{j}	0	0	0	0	0	0	
			C_j - Z_j	2	5	7 ↑	0	0	0	

Positive maximum C_j - Z_j is 7 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is 25 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 4.

Entering $= x_3$, Departing $= S_1$, Key Element = 4

 $R_1(\text{new}) = R_1(\text{old}) \div 4$

 $R_2(\text{new}) = R_2(\text{old}) - 2R_1(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_1(\text{new})$

Iteration-2		C_{j}	2	5	7	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>x</i> ₃	7	25	$\frac{3}{4}$	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0	$\frac{\frac{25}{1}}{\frac{1}{2}} = 50$
S ₂	0	50	$-\frac{1}{2}$	(3)	0	$-\frac{1}{2}$	1	0	$\frac{50}{3} = \frac{50}{3} \rightarrow$
S ₃	0	75	$\frac{1}{4}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	0	1	$\frac{75}{\frac{1}{2}} = 150$
<i>Z</i> = 175		Z_j	$\frac{21}{4}$	$\frac{7}{2}$	7	$\frac{7}{4}$	0	0	
		<i>C_j</i> - <i>Z_j</i>	$-\frac{13}{4}$	$\frac{3}{2}$ 1	0	$-\frac{7}{4}$	0	0	

Positive maximum $C_j - Z_j$ is $\frac{3}{2}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{50}{3}$ and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is 3.

Entering $= x_2$, Departing $= S_2$, Key Element = 3

$$R_2(\text{new}) = R_2(\text{old}) \div 3$$

 $R_1(\text{new}) = R_1(\text{old}) - \frac{1}{2}R_2(\text{new})$

$$R_3(\text{new}) = R_3(\text{old}) - \frac{1}{2}R_2(\text{new})$$

Iteration-3		C_j	2	5	7	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
x ₃	7	$\frac{50}{3}$	$\frac{5}{6}$	0	1	$\frac{1}{3}$	$-\frac{1}{6}$	0	
x ₂	5	$\frac{50}{3}$	$-\frac{1}{6}$	1	0	$-\frac{1}{6}$	$\frac{1}{3}$	0	
S ₃	0	$\frac{200}{3}$	$\frac{1}{3}$	0	0	$-\frac{1}{6}$	$-\frac{1}{6}$	1	
Z = 200		Z_j	5	5	7	$\frac{3}{2}$	$\frac{1}{2}$	0	
		C_j - Z_j	-3	0	0	$-\frac{3}{2}$	$-\frac{1}{2}$	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as :

$$x_1 = 0, x_2 = \frac{50}{3}, x_3 = \frac{50}{3}$$

Max Z = 200

Find solution using Simplex(BigM) method MAX Z = 2x1 + x2subject to $2x1 + x2 \le 10$ $2x1 \le 40$ and $x_{1,x_{2}} \ge 0$

Solution: **Problem** is

Max $Z = 2x_1 + x_2$ subject to $2x_1 + x_2 \le 10$ $2x_{1}$ ≤ 40

and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

 $Max Z = 2x_1 + x_2 + 0S_1 + 0S_2$ subject to $2x_1 + x_2 + S_1 = 10$

$$2x_1 + S_2 = 40$$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	2	1	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>S</i> ₁	0	10	(2)	1	1	0	$\frac{10}{2} = 5 \rightarrow$
<i>S</i> ₂	0	40	2	0	0	1	$\frac{40}{2} = 20$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	2 ↑	1	0	0	

12/22/2017

Simplex method

Positive maximum C_j - Z_j is 2 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 5 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 2.

Entering $= x_1$, Departing $= S_1$, Key Element = 2

 $R_1(\text{new}) = R_1(\text{old}) \div 2$

 $R_2(\text{new}) = R_2(\text{old}) - 2R_1(\text{new})$

Iteration-2		C_j	2	1	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	MinRatio
x ₁	2	5	1	$\frac{1}{2}$	$\frac{1}{2}$	0	
<i>S</i> ₂	0	30	0	- 1	- 1	1	
Z = 10		Z_j	2	1	1	0	
		C_j - Z_j	0	0	- 1	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 5, x_2 = 0$

 $\operatorname{Max} Z = 10$

Find solution using Simplex(BigM) method MAX Z = 3x1 + 2x2subject to $2x1 + 2x2 \le 10$ $x1 + 3x2 \le 6$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 3x_1 + 2x_2$ subject to $2x_1 + 2x_2 \le 10$ $x_1 + 3x_2 \le 6$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = 3x_1 + 2x_2 + 0S_1 + 0S_2$ subject to $2x_1 + 2x_2 + S_1 = 10$

 $x_1 + 3x_2 + S_2 = 6$ and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_{j}	3	2	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>S</i> ₁	0	10	(2)	2	1	0	$\frac{10}{2} = 5 \rightarrow$
S ₂	0	6	1	3	0	1	$\frac{6}{1} = 6$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	3 ↑	2	0	0	

12/22/2017

Simplex method

Positive maximum C_j - Z_j is 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 5 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 2.

Entering $= x_1$, Departing $= S_1$, Key Element = 2

 $R_1(\text{new}) = R_1(\text{old}) \div 2$

 $R_2(\text{new}) = R_2(\text{old}) - R_1(\text{new})$

Iteration-2		C_j	3	2	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	<i>S</i> ₂	MinRatio
x ₁	3	5	1	1	$\frac{1}{2}$	0	
S ₂	0	1	0	2	$-\frac{1}{2}$	1	
<i>Z</i> = 15		Z_j	3	3	$\frac{3}{2}$	0	
		<i>C_j</i> - <i>Z_j</i>	0	- 1	$-\frac{3}{2}$	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 5, x_2 = 0$

Max Z = 15

Find solution using Simplex(BigM) method MAX Z = 3x1 + 9x2subject to $x1 + 4x2 \le 8$ $x1 + 2x2 \le 4$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 3x_1 + 9x_2$ subject to $x_1 + 4x_2 \le 8$ $x_1 + 2x_2 \le 4$

and $x_1, x_2 \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = 3x_1 + 9x_2 + 0S_1 + 0S_2$ subject to

 $x_1 + 4x_2 + S_1 = 8$ $x_1 + 2x_2 + S_2 = 4$ and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	3	9	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
S ₁	0	8	1	4	1	0	$\frac{8}{4} = 2$
<i>S</i> ₂	0	4	1	(2)	0	1	$\frac{4}{2} = 2 \rightarrow$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	3	9 ↑	0	0	

Simplex method

Positive maximum C_j - Z_j is 9 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 2 and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is 2.

Entering $= x_2$, Departing $= S_2$, Key Element = 2

 $R_2(\text{new}) = R_2(\text{old}) \div 2$

 $R_1(\text{new}) = R_1(\text{old}) - 4R_2(\text{new})$

Iteration-2		C_j	3	9	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>S</i> ₁	0	0	- 1	0	1	-2	
x ₂	9	2	$\frac{1}{2}$	1	0	$\frac{1}{2}$	
<i>Z</i> = 18		Z_j	$\frac{9}{2}$	9	0	$\frac{9}{2}$	
		$C_j - Z_j$	$-\frac{3}{2}$	0	0	$-\frac{9}{2}$	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 2$

 $\operatorname{Max} Z = 18$

12/22/2017

Simplex method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + x2 + 2x3 subject to x1 + x2 + x3 <= 2 2x1 + x2 + x3 <= 3 x1 + 2x2 + 2x3 <= 4 and x1,x2,x3 >= 0

Solution: Problem is

 $Max Z = 3x_1 + x_2 + 2x_3$

subject to

 $x_{1} + x_{2} + x_{3} \le 2$ $2x_{1} + x_{2} + x_{3} \le 3$ $x_{1} + 2x_{2} + 2x_{3} \le 4$ and $x_{1}, x_{2}, x_{3} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = 3x_1 + x_2 + 2x_3 + 0S_1 + 0S_2 + 0S_3$ subject to

Iteration-1		C_{j}	3	1	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	2	1	1	1	1	0	0	$\frac{2}{1} = 2$
S ₂	0	3	(2)	1	1	0	1	0	$\frac{3}{2} = \frac{3}{2} \rightarrow$

about:blank

12/22/2017				Simplex	method				
S ₃	0	4	1	2	2	0	0	1	$\frac{4}{1} = 4$
Z = 0		Z_{j}	0	0	0	0	0	0	
		C_j - Z_j	3 ↑	1	2	0	0	0	

Positive maximum $C_j - Z_j$ is 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is $\frac{3}{2}$ and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is 2.

Entering $= x_1$, Departing $= S_2$, Key Element = 2

 $R_2(\text{new}) = R_2(\text{old}) \div 2$

 $R_1(\text{new}) = R_1(\text{old}) - R_2(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_2(\text{new})$

Iteration-2		C_{j}	3	1	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	$ MinRatio \frac{X_B}{x_3} $
<i>S</i> ₁	0	$\frac{1}{2}$	0	$\frac{1}{2}$	$\left(\frac{1}{2}\right)$	1	$-\frac{1}{2}$	0	$\frac{\frac{1}{2}}{\frac{1}{2}} = 1 \rightarrow$
<i>x</i> ₁	3	$\frac{3}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{\frac{3}{2}}{\frac{1}{2}} = 3$
S ₃	0	$\frac{5}{2}$	0	$\frac{3}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	1	$\frac{\frac{5}{2}}{\frac{3}{2}} = \frac{5}{3}$
$Z = \frac{9}{2}$		Z_j	3	$\frac{3}{2}$	$\frac{3}{2}$	0	$\frac{3}{2}$	0	
		<i>C_j</i> - <i>Z_j</i>	0	$-\frac{1}{2}$	$\frac{1}{2}$ \uparrow	0	$-\frac{3}{2}$	0	

12/22/2017

Simplex method

Positive maximum $C_j - Z_j$ is $\frac{1}{2}$ and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is 1 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is $\frac{1}{2}$.

Entering = x_3 , Departing = S_1 , Key Element = $\frac{1}{2}$

 $R_1(\text{new}) = R_1(\text{old}) \times 2$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{2}R_1(\text{new})$$

 $R_3(\text{new}) = R_3(\text{old}) - \frac{3}{2}R_1(\text{new})$

Iteration-3		C_j	3	1	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
<i>x</i> ₃	2	1	0	1	1	2	- 1	0	
<i>x</i> ₁	3	1	1	0	0	- 1	1	0	
S ₃	0	1	0	0	0	-3	1	1	
<i>Z</i> = 5		Z_j	3	2	2	1	1	0	
		C_j - Z_j	0	- 1	0	- 1	- 1	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 1, x_2 = 0, x_3 = 1$

Max Z = 5

Find solution using Simplex(BigM) method MAX Z = 4x1 + 3x2subject to $2x1 + x2 \le 1000$ $x1 + x2 \le 800$ and $x1,x2 \ge 0$

Solution: Problem is

 $\operatorname{Max} Z = 4x_1 + 3x_2$

subject to

 $2x_1 + x_2 \le 1000$

 $x_1 + x_2 \le 800$

and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = 4x_1 + 3x_2 + 0S_1 + 0S_2$ subject to $2x_1 + x_2 + S_1 = 1000$

 $x_1 + x_2 + S_2 = 800$ and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	4	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	$ MinRatio \frac{X_B}{x_1} $
S ₁	0	1000	(2)	1	1	0	$\frac{1000}{2} = 500 \rightarrow$
S ₂	0	800	1	1	0	1	$\frac{800}{1} = 800$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	4 ↑	3	0	0	

12/22/2017

Simplex method

Positive maximum $C_j - Z_j$ is 4 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 500 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 2.

Entering $= x_1$, Departing $= S_1$, Key Element = 2

 $R_1(\text{new}) = R_1(\text{old}) \div 2$

 $R_2(\text{new}) = R_2(\text{old}) - R_1(\text{new})$

Iteration-2		C _j	4	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>x</i> ₁	4	500	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{500}{\frac{1}{2}} = 1000$
S ₂	0	300	0	$\left(\frac{1}{2}\right)$	$-\frac{1}{2}$	1	$\frac{300}{\frac{1}{2}} = 600 \rightarrow$
Z = 2000		Z_j	4	2	2	0	
		C_j - Z_j	0	1 ↑	-2	0	

Positive maximum $C_j - Z_j$ is 1 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 600 and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is $\frac{1}{2}$.

Entering = x_2 , Departing = S_2 , Key Element = $\frac{1}{2}$

$$R_2(\text{new}) = R_2(\text{old}) \times 2$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{1}{2}R_2(\text{new})$$

Iteration-3		C_j	4	3	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>x</i> ₁	4	200	1	0	1	- 1	

about:blank

12/22/2017

Simplex method

2/22/2011			Omp				
<i>x</i> ₂	3	600	0	1	- 1	2	
Z = 2600		Z_j	4	3	1	2	
		<i>C_j</i> - <i>Z_j</i>	0	0	- 1	-2	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 200, x_2 = 600$

Max Z = 2600

Find solution using Simplex(BigM) method MAX Z = 4x1 + 8x2subject to $2x1 + 4x2 \le 4$ $3x1 + 6x2 \le 6$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 4x_1 + 8x_2$ subject to $2x_1 + 4x_2 \le 4$ $3x_1 + 6x_2 \le 6$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = 4x_1 + 8x_2 + 0S_1 + 0S_2$ subject to $2x_1 + 4x_2 + S_1 = 4$ $3x_1 + 6x_2 + S_2 = 6$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	4	8	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$ MinRatio \frac{X_B}{x_2} $
<i>S</i> ₁	0	4	2	4	1	0	$\frac{4}{4} = 1$
<i>S</i> ₂	0	6	3	(6)	0	1	$\frac{6}{6} = 1 \rightarrow$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	4	8 ↑	0	0	

Simplex method

Positive maximum C_j - Z_j is 8 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 1 and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is 6.

Entering $= x_2$, Departing $= S_2$, Key Element = 6

 $R_2(\text{new}) = R_2(\text{old}) \div 6$

 $R_1(\text{new}) = R_1(\text{old}) - 4R_2(\text{new})$

Iteration-2		C_{j}	4	8	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
<i>S</i> ₁	0	0	0	0	1	$-\frac{2}{3}$	
x ₂	8	1	$\frac{1}{2}$	1	0	$\frac{1}{6}$	
Z = 8		Z_j	4	8	0	$\frac{4}{3}$	
		C_j - Z_j	0	0	0	$-\frac{4}{3}$	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 1$

Max Z = 8

Find solution using Simplex(BigM) method MAX Z = 5x1 + 16x2subject to $2x1 + 5x2 \le 10000$ $3x1 + 4x2 \le 15000$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 5x_1 + 16x_2$ subject to $2x_1 + 5x_2 \le 10000$ $3x_1 + 4x_2 \le 15000$ and $x_1 + x_2 \ge 0$:

and $x_1, x_2 \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = 5x_1 + 16x_2 + 0S_1 + 0S_2$ subject to $2x_1 + 5x_2 + S_1 = 10000$

 $3x_1 + 4x_2 + S_2 = 15000$ and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	5	16	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$ MinRatio \frac{X_B}{x_2} $
<i>S</i> ₁	0	10000	2	(5)	1	0	$\frac{10000}{5} = 2000 \rightarrow$
S ₂	0	15000	3	4	0	1	$\frac{15000}{4} = 3750$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	5	16 ↑	0	0	

Simplex method

Positive maximum C_j - Z_j is 16 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 2000 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 5.

Entering $= x_2$, Departing $= S_1$, Key Element = 5

 $R_1(\text{new}) = R_1(\text{old}) \div 5$

 $R_2(\text{new}) = R_2(\text{old}) - 4R_1(\text{new})$

Iteration-2		C_j	5	16	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	<i>S</i> ₂	MinRatio
x ₂	16	2000	$\frac{2}{5}$	1	$\frac{1}{5}$	0	
<i>S</i> ₂	0	7000	$\frac{7}{5}$	0	$-\frac{4}{5}$	1	
Z = 32000		Z_j	$\frac{32}{5}$	16	$\frac{16}{5}$	0	
		C_j - Z_j	$-\frac{7}{5}$	0	$-\frac{16}{5}$	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 2000$

Max Z = 32000

Find solution using Simplex(BigM) method MAX Z = 6x1 + 8x2subject to $30x1 + 20x2 \le 300$ $5x1 + 10x2 \le 110$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 6x_1 + 8x_2$ subject to $30x_1 + 20x_2 \le 300$ $5x_1 + 10x_2 \le 110$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max Z = $6x_1 + 8x_2 + 0S_1 + 0S_2$ subject to $30x_1 + 20x_2 + S_1 = 300$ $5x_1 + 10x_2 + S_2 = 110$ and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	6	8	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
S ₁	0	300	30	20	1	0	$\frac{300}{20} = 15$
S ₂	0	110	5	(10)	0	1	$\frac{110}{10} = 11 \rightarrow$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	6	8 ↑	0	0	

Simplex method

Positive maximum C_j - Z_j is 8 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 11 and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is 10.

Entering $= x_2$, Departing $= S_2$, Key Element = 10

 $R_2(\text{new}) = R_2(\text{old}) \div 10$

 $R_1(\text{new}) = R_1(\text{old}) - 20R_2(\text{new})$

Iteration-2		C_j	6	8	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>S</i> ₁	0	80	(20)	0	1	-2	$\frac{80}{20} = 4 \rightarrow$
<i>x</i> ₂	8	11	$\frac{1}{2}$	1	0	$\frac{1}{10}$	$\frac{11}{\frac{1}{2}} = 22$
Z = 88		Z_j	4	8	0	4 5	
		C_j - Z_j	2 ↑	0	0	$-\frac{4}{5}$	

Positive maximum $C_j - Z_j$ is 2 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 4 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 20.

Entering $= x_1$, Departing $= S_1$, Key Element = 20

$$R_1(\text{new}) = R_1(\text{old}) \div 20$$

$$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{2}R_1(\text{new})$$

Iteration-3		C_j	6	8	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	MinRatio
<i>x</i> ₁	6	4	1	0	$\frac{1}{20}$	$-\frac{1}{10}$	

about:blank

12/23/2017				Simplex me	ethod		
<i>x</i> ₂	8	9	0	1	$-\frac{1}{40}$	$\frac{3}{20}$	
<i>Z</i> = 96		Z_j	6	8	$\frac{1}{10}$	$\frac{3}{5}$	
		C_j - Z_j	0	0	$-\frac{1}{10}$	$-\frac{3}{5}$	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 4, x_2 = 9$

Max Z = 96

Find solution using Simplex(BigM) method MAX Z = 7x1 + 6x2subject to $6x1 + 7x2 \le 12$ $5x2 \le 30$ and $x1,x2 \ge 0$

Solution: Problem is

Max Z = $7x_1 + 6x_2$ subject to $6x_1 + 7x_2 \le 12$ $5x_2 \le 30$ and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = 7x_1 + 6x_2 + 0S_1 + 0S_2$ subject to

$$6x_1 + 7x_2 + S_1 = 12$$

$$5x_2 + S_2 = 30$$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	7	6	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>S</i> ₁	0	12	(6)	7	1	0	$\frac{12}{6} = 2 \rightarrow$
<i>S</i> ₂	0	30	0	5	0	1	
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	7 ↑	6	0	0	

Positive maximum $C_j - Z_j$ is 7 and its column index is 1. So, the entering variable is x_1 . about:blank Minimum ratio is 2 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 6.

Entering $= x_1$, Departing $= S_1$, Key Element = 6

 $R_1(\text{new}) = R_1(\text{old}) \div 6$

 $R_2(\text{new}) = R_2(\text{old})$

Iteration-2		C_j	7	6	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	MinRatio
<i>x</i> ₁	7	2	1	$\frac{7}{6}$	$\frac{1}{6}$	0	
<i>S</i> ₂	0	30	0	5	0	1	
Z = 14		Z_j	7	$\frac{49}{6}$	$\frac{7}{6}$	0	
		C_j - Z_j	0	$-\frac{13}{6}$	$-\frac{7}{6}$	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 2, x_2 = 0$

Max Z = 14

Find solution using Simplex(BigM) method MAX Z = 120x1 + 110x2subject to $5x1 + 2x2 \le 100$ $3x1 + 3x2 \le 50$ and $x1,x2 \ge 0$

Solution: Problem is

Max Z = $120x_1 + 110x_2$ subject to $5x_1 + 2x_2 \le 100$ $3x_1 + 3x_2 \le 50$

and $x_1, x_2 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max Z = $120x_1 + 110x_2 + 0S_1 + 0S_2$ subject to $5x_1 + 2x_2 + S_1 = 100$ $3x_1 + 3x_2 + S_2 = 50$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	120	110	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	100	5	2	1	0	$\frac{100}{5} = 20$
S ₂	0	50	(3)	3	0	1	$\frac{50}{3} = \frac{50}{3} \rightarrow$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	120 ↑	110	0	0	

Simplex method

Positive maximum C_j - Z_j is 120 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is $\frac{50}{3}$ and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is 3.

Entering $= x_1$, Departing $= S_2$, Key Element = 3

 $R_2(\text{new}) = R_2(\text{old}) \div 3$

 $R_1(\text{new}) = R_1(\text{old}) - 5R_2(\text{new})$

Iteration-2		C_j	120	110	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
S ₁	0	$\frac{50}{3}$	0	-3	1	$-\frac{5}{3}$	
<i>x</i> ₁	120	$\frac{50}{3}$	1	1	0	$\frac{1}{3}$	
Z = 2000		Z_j	120	120	0	40	
		C_j - Z_j	0	- 10	0	-40	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as :

$$x_1 = \frac{50}{3}, x_2 = 0$$

Max Z = 2000

Find solution using Simplex(BigM) method MAX Z = 500x1 + 600x2 + 1200x3subject to $2x1 + 4x2 + 6x3 \le 160$ $3x1 + 2x2 + 4x3 \le 120$ and $x1,x2,x3 \ge 0$ Solution:

Problem is

Max Z = $500x_1 + 600x_2 + 1200x_3$ subject to $2x_1 + 4x_2 + 6x_3 \le 160$ $3x_1 + 2x_2 + 4x_3 \le 120$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

 $Max Z = 500 x_1 + 600 x_2 + 1200 x_3 + 0 S_1 + 0 S_2$

subject to

 $2x_1 + 4x_2 + 6x_3 + S_1 = 160$ $3x_1 + 2x_2 + 4x_3 + S_2 = 120$ and $x_1, x_2, x_3, S_1, S_2 \ge 0$

Iteration-1		C_j	500	600	1200	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_3}}$
S ₁	0	160	2	4	(6)	1	0	$\frac{160}{6} = \frac{80}{3} \rightarrow$
S ₂	0	120	3	2	4	0	1	$\frac{120}{4} = 30$
Z = 0		Z_j	0	0	0	0	0	
		$C_j - Z_j$	500	600	1200 ↑	0	0	

Simplex method

Positive maximum C_j - Z_j is 1200 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is $\frac{80}{3}$ and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 6.

Entering $= x_3$, Departing $= S_1$, Key Element = 6

 $R_1(\text{new}) = R_1(\text{old}) \div 6$

 $R_2(\text{new}) = R_2(\text{old}) - 4R_1(\text{new})$

Iteration-2		C_j	500	600	1200	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
<i>x</i> ₃	1200	$\frac{80}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	1	$\frac{1}{6}$	0	$\frac{\frac{80}{3}}{\frac{1}{3}} = 80$
<i>S</i> ₂	0	$\frac{40}{3}$	$\left(\frac{5}{3}\right)$	$-\frac{2}{3}$	0	$-\frac{2}{3}$	1	$\frac{\frac{40}{3}}{\frac{5}{3}} = 8 \rightarrow$
Z = 32000		Z_j	400	800	1200	200	0	
		$C_j - Z_j$	100 ↑	-200	0	-200	0	

Positive maximum C_j - Z_j is 100 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 8 and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is $\frac{5}{3}$.

Entering = x_1 , Departing = S_2 , Key Element = $\frac{5}{3}$

 $R_2(\text{new}) = R_2(\text{old}) \times \frac{3}{5}$

 $R_1(\text{new}) = R_1(\text{old}) - \frac{1}{3}R_2(\text{new})$

Iteration-3	C_j	500	600	1200	0	0	

about:blank

12/23/2017								
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	MinRatio
<i>x</i> ₃	1200	24	0	$\frac{4}{5}$	1	$\frac{3}{10}$	$-\frac{1}{5}$	
<i>x</i> ₁	500	8	1	$-\frac{2}{5}$	0	$-\frac{2}{5}$	$\frac{3}{5}$	
Z = 32800		Z_j	500	760	1200	160	60	
		C_j - Z_j	0	- 160	0	- 160	- 60	

Since all $C_j - Z_j \leq 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 8, x_2 = 0, x_3 = 24$

Max Z = 32800

Simplex method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = x1 - x2 + 2x3subject to $x1 + x2 + x3 \le 4$ $x1 - 2x2 + x3 \le 6$ $3x1 + 2x2 + x3 \le 0$ and $x1,x2,x3 \ge 0$

Solution: Problem is

 $Max Z = x_1 - x_2 + 2x_3$

subject to

 $x_{1} + x_{2} + x_{3} \le 4$ $x_{1} - 2x_{2} + x_{3} \le 6$ $3x_{1} + 2x_{2} + x_{3} \le 0$ and $x_{1}, x_{2}, x_{3} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = x_1 - x_2 + 2x_3 + 0S_1 + 0S_2 + 0S_3$ subject to

Iteration-1		C_j	1	- 1	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_3}}$
S ₁	0	4	1	1	1	1	0	0	$\frac{4}{1} = 4$
S ₂	0	6	1	-2	1	0	1	0	$\frac{6}{1} = 6$

about:blank

Simplex method

12/23/2017				OIII					
S ₃	0	0	3	2	(1)	0	0	1	$\frac{0}{1} = 0 \longrightarrow$
Z = 0		Z_{j}	0	0	0	0	0	0	
		$C_j - Z_j$	1	- 1	2 ↑	0	0	0	

Positive maximum C_j - Z_j is 2 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is 0 and its row index is 3. So, the leaving basis variable is S_3 .

 \therefore The pivot element is 1.

Entering $= x_3$, Departing $= S_3$, Key Element = 1

 $R_3(\text{new}) = R_3(\text{old})$

 $R_1(\text{new}) = R_1(\text{old}) - R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - R_3(\text{new})$

Iteration-2		C_j	1	- 1	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
S ₁	0	4	-2	- 1	0	1	0	- 1	
S ₂	0	6	-2	-4	0	0	1	- 1	
x ₃	2	0	3	2	1	0	0	1	
Z = 0		Z_j	6	4	2	0	0	2	
		C_j - Z_j	- 5	- 5	0	0	0	-2	

Since all $C_j - Z_j \leq 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 0, x_3 = 0$

 $\operatorname{Max} Z = 0$

12/22/2017

Simplex method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = x1 + x2 + 2x3subject to $3x1 + 2x2 + x3 \le 2$ $2x1 + 2x2 + x3 \le 3$ and $x1,x2,x3 \ge 0$

Solution: Problem is

Max $Z = x_1 + x_2 + 2x_3$ subject to $3x_1 + 2x_2 + x_3 \le 2$ $2x_1 + 2x_2 + x_3 \le 3$ and $x_1, x_2, x_3 \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max $Z = x_1 + x_2 + 2x_3 + 0S_1 + 0S_2$ subject to

 $3x_1 + 2x_2 + x_3 + S_1 = 2$ $2x_1 + 2x_2 + x_3 + S_2 = 3$ and $x_1, x_2, x_3, S_1, S_2 \ge 0$

Iteration-1		C_j	1	1	2	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	$ MinRatio \frac{X_B}{x_3} $
<i>S</i> ₁	0	2	3	2	(1)	1	0	$\frac{2}{1} = 2 \rightarrow$
<i>S</i> ₂	0	3	2	2	1	0	1	$\frac{3}{1} = 3$
Z = 0		Z_j	0	0	0	0	0	
		C_j - Z_j	1	1	2 ↑	0	0	

12/22/2017

Simplex method

Positive maximum C_j - Z_j is 2 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is 2 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 1.

Entering $= x_3$, Departing $= S_1$, Key Element = 1

 $R_1(\text{new}) = R_1(\text{old})$

 $R_2(\text{new}) = R_2(\text{old}) - R_1(\text{new})$

Iteration-2		C_j	1	1	2	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	MinRatio
x ₃	2	2	3	2	1	1	0	
<i>S</i> ₂	0	1	- 1	0	0	- 1	1	
<i>Z</i> = 4		Z_j	6	4	2	2	0	
		C_j - Z_j	- 5	-3	0	-2	0	

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 0, x_2 = 0, x_3 = 2$

Max Z = 4

12/22/2017

Simplex method

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + 2x2 + x3subject to $x1 + 2x2 + x3 \le 12$ $x1 + 3x2 \le 18$ $2x1 + 4x3 \le 22$ and $x1,x2,x3 \ge 0$

Solution: Problem is

 $Max Z = 3x_1 + 2x_2 + x_3$

subject to

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = 3x_1 + 2x_2 + x_3 + 0S_1 + 0S_2 + 0S_3$ subject to

$x_1 +$	$2x_2 + x_3$	+ S_{1}		= 12
$x_1 +$	3 <i>x</i> ₂	+	S_2	= 18
$2x_1$	$+ 4x_3$		+	$S_3 = 22$
and x_1, x_2	$x_2, x_3, S_1, S_2,$	$S_3 \ge 0$		

Iteration-1		C_{j}	3	2	1	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	12	1	2	1	1	0	0	$\frac{12}{1} = 12$
S ₂	0	18	1	3	0	0	1	0	$\frac{18}{1} = 18$

12/22/2017	Simplex method										
S ₃	0	22	(2)	0	4	0	0	1	$\frac{22}{2} = 11 \rightarrow$		
Z = 0		Z_{j}	0	0	0	0	0	0			
		C_j - Z_j	3 ↑	2	1	0	0	0			

Positive maximum C_j - Z_j is 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 11 and its row index is 3. So, the leaving basis variable is S_3 .

 \therefore The pivot element is 2.

Entering $= x_1$, Departing $= S_3$, Key Element = 2

 $R_3(\text{new}) = R_3(\text{old}) \div 2$

 $R_1(\text{new}) = R_1(\text{old}) - R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - R_3(\text{new})$

Iteration-2		C_j	3	2	1	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	S ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
<i>S</i> ₁	0	1	0	(2)	- 1	1	0	$-\frac{1}{2}$	$\frac{1}{2} = \frac{1}{2} \rightarrow$
S ₂	0	7	0	3	-2	0	1	$-\frac{1}{2}$	$\frac{7}{3} = \frac{7}{3}$
<i>x</i> ₁	3	11	1	0	2	0	0	$\frac{1}{2}$	
Z = 33		Z_{j}	3	0	6	0	0	$\frac{3}{2}$	
		<i>C_j</i> - <i>Z_j</i>	0	2 ↑	- 5	0	0	$-\frac{3}{2}$	

Positive maximum C_j - Z_j is 2 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is $\frac{1}{2}$ and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 2.

12/22/2017

Entering = x_2 , Departing = S_1 , Key Element = 2

$$R_1(\text{new}) = R_1(\text{old}) \div 2$$

 $R_2(\text{new}) = R_2(\text{old}) - 3R_1(\text{new})$

$$R_3(\text{new}) = R_3(\text{old})$$

Iteration-3		C_j	3	2	1	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	<i>S</i> ₃	MinRatio
<i>x</i> ₂	2	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	
S ₂	0	$\frac{11}{2}$	0	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	$\frac{1}{4}$	
x ₁	3	11	1	0	2	0	0	$\frac{1}{2}$	
<i>Z</i> = 34		Z_j	3	2	5	1	0	1	
		C_j - Z_j	0	0	-4	- 1	0	- 1	

Since all $C_j - Z_j \leq 0$

Hence, optimal solution is arrived with value of variables as :

 $x_1 = 11, x_2 = \frac{1}{2}, x_3 = 0$

Max Z = 34

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 3x1 + 2x2 subject to 4x1 + 3x2 <= 12 4x1 + x2 <= 8 4x1 - x2 <= 8 and x1,x2 >= 0

Solution: Problem is

Max $Z = 3x_1 + 2x_2$

subject to

 $4x_{1} + 3x_{2} \le 12$ $4x_{1} + x_{2} \le 8$ $4x_{1} - x_{2} \le 8$ and $x_{1}, x_{2} \ge 0$;

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1
- 2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2
- 3. As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables

Max $Z = 3x_1 + 2x_2 + 0S_1 + 0S_2 + 0S_3$ subject to

Iteration-1		C_{j}	3	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	S ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_1}}$
S ₁	0	12	4	3	1	0	0	$\frac{12}{4} = 3$
S ₂	0	8	4	1	0	1	0	$\frac{8}{4} = 2$

12/23/2017	Simplex method										
<i>S</i> ₃	0	8	8 (4) -1 0 0 1								
Z = 0		Z_{j}	0	0	0	0	0				
		$C_j - Z_j$	3 ↑	2	0	0	0				

Positive maximum C_j - Z_j is 3 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 2 and its row index is 3. So, the leaving basis variable is S_3 .

 \therefore The pivot element is 4.

Entering $= x_1$, Departing $= S_3$, Key Element = 4

 $R_3(\text{new}) = R_3(\text{old}) \div 4$

 $R_1(\text{new}) = R_1(\text{old}) - 4R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - 4R_3(\text{new})$

Iteration-2		C_j	3	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	S ₃	$\frac{\text{MinRatio}}{\frac{X_B}{x_2}}$
S ₁	0	4	0	4	1	0	- 1	$\frac{4}{4} = 1$
S ₂	0	0	0	(2)	0	1	- 1	$\frac{0}{2} = 0 \rightarrow$
<i>x</i> ₁	3	2	1	$-\frac{1}{4}$	0	0	$\frac{1}{4}$	
<i>Z</i> = 6		Z_j	3	$-\frac{3}{4}$	0	0	$\frac{3}{4}$	
		C_j - Z_j	0	$\frac{11}{4}$ \uparrow	0	0	$-\frac{3}{4}$	

Positive maximum $C_j - Z_j$ is $\frac{11}{4}$ and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 0 and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is 2.

12/23/2017

Entering $= x_2$, Departing $= S_2$, Key Element = 2

$$R_2(\text{new}) = R_2(\text{old}) \div 2$$

 $R_1(\text{new}) = R_1(\text{old}) - 4R_2(\text{new})$

$$R_3(\text{new}) = R_3(\text{old}) + \frac{1}{4}R_2(\text{new})$$

Iteration-3		C_j	3	2	0	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	<i>S</i> ₂	<i>S</i> ₃	$\frac{\text{MinRatio}}{\frac{X_B}{S_3}}$
<i>S</i> ₁	0	4	0	0	1	-2	(1)	$\frac{4}{1} = 4 \rightarrow$
x ₂	2	0	0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₁	3	2	1	0	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{\frac{2}{1}}{\frac{1}{8}} = 16$
<i>Z</i> = 6		Z_j	3	2	0	$\frac{11}{8}$	$-\frac{5}{8}$	
		C_j - Z_j	0	0	0	$-\frac{11}{8}$	$\frac{5}{8}$ \uparrow	

Positive maximum $C_j - Z_j$ is $\frac{5}{8}$ and its column index is 5. So, the entering variable is S_3 .

Minimum ratio is 4 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 1.

Entering = S_3 , Departing = S_1 , Key Element = 1

$$R_1(\text{new}) = R_1(\text{old})$$

$$R_2(\text{new}) = R_2(\text{old}) + \frac{1}{2}R_1(\text{new})$$

$$R_3(\text{new}) = R_3(\text{old}) - \frac{1}{8}R_1(\text{new})$$

Iteration-4	C_j	3	2	0	0	0	
В							MinRatio

12/23/2017	Simplex method										
	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	<i>S</i> ₃				
S ₃	0	4	0	0	1	-2	1				
<i>x</i> ₂	2	2	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	0				
<i>x</i> ₁	3	$\frac{3}{2}$	1	0	$-\frac{1}{8}$	$\frac{3}{8}$	0				
$Z = \frac{17}{2}$		Z_{j}	3	2	$\frac{5}{8}$	$\frac{1}{8}$	0				
		C_j - Z_j	0	0	$-\frac{5}{8}$	$-\frac{1}{8}$	0				

Since all $C_j - Z_j \le 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = \frac{3}{2}, x_2 = 2$

 $\operatorname{Max} Z = \frac{17}{2}$

Print This Solution Close This Solution

Find solution using Simplex(BigM) method MAX Z = 5x1 + 6x2subject to $2x1 + 5x2 \le 10000$ $3x1 + 4x2 \le 15000$ and $x1,x2 \ge 0$

Solution: Problem is

Max $Z = 5x_1 + 6x_2$

subject to

 $2x_1 + 5x_2 \le 10000$ $3x_1 + 4x_2 \le 15000$

and $x_1, x_2 \ge 0;$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \leq ' we should add slack variable S_1

2. As the constraint 2 is of type ' \leq ' we should add slack variable S_2

After introducing slack variables

Max Z = $5x_1 + 6x_2 + 0S_1 + 0S_2$ subject to $2x_1 + 5x_2 + S_1 = 10000$ $3x_1 + 4x_2 + S_2 = 15000$

and $x_1, x_2, S_1, S_2 \ge 0$

Iteration-1		C_j	5	6	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	$ MinRatio \frac{X_B}{x_2} $
<i>S</i> ₁	0	10000	2	(5)	1	0	$\frac{10000}{5} = 2000 \rightarrow$
S ₂	0	15000	3	4	0	1	$\frac{15000}{4} = 3750$
Z = 0		Z_j	0	0	0	0	
		C_j - Z_j	5	6 ↑	0	0	

12/23/2017

Simplex method

Positive maximum C_j - Z_j is 6 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 2000 and its row index is 1. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 5.

Entering $= x_2$, Departing $= S_1$, Key Element = 5

 $R_1(\text{new}) = R_1(\text{old}) \div 5$

 $R_2(\text{new}) = R_2(\text{old}) - 4R_1(\text{new})$

Iteration-2		C_j	5	6	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	$ \begin{array}{r} \text{MinRatio} \\ X_B \\ \overline{x_1} \end{array} $
x ₂	6	2000	$\frac{2}{5}$	1	$\frac{1}{5}$	0	$\frac{2000}{\frac{2}{5}} = 5000$
S ₂	0	7000	$\left(\frac{7}{5}\right)$	0	$-\frac{4}{5}$	1	$\frac{7000}{\frac{7}{5}} = 5000 \rightarrow$
Z = 12000		Z_j	$\frac{12}{5}$	6	$\frac{6}{5}$	0	
		<i>C_j</i> - <i>Z_j</i>	$\frac{13}{5}$ \uparrow	0	$-\frac{6}{5}$	0	

Positive maximum $C_j - Z_j$ is $\frac{13}{5}$ and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 5000 and its row index is 2. So, the leaving basis variable is S_2 .

 \therefore The pivot element is $\frac{7}{5}$.

Entering $= x_1$, Departing $= S_2$, Key Element $= \frac{7}{5}$

$$R_2(\text{new}) = R_2(\text{old}) \times \frac{5}{7}$$

$$R_1(\text{new}) = R_1(\text{old}) - \frac{2}{5}R_2(\text{new})$$

Iteration-3	C_j	5	6	0	0	

12/23/2017	2017 Simplex method									
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	S ₁	S ₂	$\frac{MinRatio}{\frac{X_B}{S_1}}$			
<i>x</i> ₂	6	0	0	1	$\left(\frac{3}{7}\right)$	$-\frac{2}{7}$	$\frac{0}{\frac{3}{7}} = 0 \longrightarrow$			
<i>x</i> ₁	5	5000	1	0	$-\frac{4}{7}$	$\frac{5}{7}$				
Z = 25000		Z_j	5	6	$-\frac{2}{7}$	$\frac{13}{7}$				
		C_j - Z_j	0	0	$\frac{2}{7}$ \uparrow	$-\frac{13}{7}$				

Positive maximum $C_j - Z_j$ is $\frac{2}{7}$ and its column index is 3. So, the entering variable is S_1 .

Minimum ratio is 0 and its row index is 1. So, the leaving basis variable is x_2 .

 \therefore The pivot element is $\frac{3}{7}$.

Entering = S_1 , Departing = x_2 , Key Element = $\frac{3}{7}$

$$R_1(\text{new}) = R_1(\text{old}) \times \frac{7}{3}$$

$$R_2(\text{new}) = R_2(\text{old}) + \frac{4}{7}R_1(\text{new})$$

Iteration-4		C_j	5	6	0	0	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S ₂	MinRatio
S ₁	0	0	0	$\frac{7}{3}$	1	$-\frac{2}{3}$	
<i>x</i> ₁	5	5000	1	$\frac{4}{3}$	0	$\frac{1}{3}$	
Z = 25000		Z_j	5	$\frac{20}{3}$	0	$\frac{5}{3}$	
		C_j - Z_j	0	$-\frac{2}{3}$	0	$-\frac{5}{3}$	

Since all $C_j - Z_j \leq 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 5000, x_2 = 0$

Max Z = 25000